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ABSTRACT

Convolution neural networks (CNNs) can be efficiently ex-
ecuted on dataflow accelerators. However, the vast space of
executing convolutions on computational and memory re-
sources of accelerators makes difficult for programmers to
automatically and efficiently accelerate the convolutions and
for architects to achieve efficient accelerator designs. We
propose dMazeRunner framework, which allows users to op-
timize execution methods for accelerating convolution and
matrix multiplication on a given architecture and to explore
dataflow accelerator designs for efficiently executing CNN
models. dMazeRunner determines efficient dataflows tailored
for CNN layers and achieves efficient execution methods for
CNN models within several seconds.

Index Terms— Hardware accelerators, energy-efficiency,
mapping, deep learning, design space exploration

1. INTRODUCTION

CNNs are widely used in several important domains including
image recognition, object detection, media generation, and
video analysis [1, 2, 3, 4]. CNNs exhibit many convolution
and a few fully-connected (FC) layers; execution time is ma-
jorly spent in convolutions [5]. With advances in computing
systems, it has become feasible to deploy CNNs for quick and
accurate classification of even high-resolution images.

Many energy-efficient accelerators are being developed
to execute CNNs with high throughput. In particular, many
variations of dataflow accelerators, including systolic arrays,
coarse-grained reconfigurable arrays, and spatial architec-
tures have been shown as effective for accelerating CNNs
[3, 5, 6, 7]. As shown in Fig. 1(c), dataflow accelerators com-
prise of an array of processing elements (PEs) with private
register files (RFs) and a shared scratchpad memory (SPM).
Since PEs are much simple in design (function units with little
local control), and the scratchpad is non-coherent, these ac-
celerators are a few orders of magnitude power-efficient than
out-of-order CPU or GPU cores [3, 5]. Private and shared
memories of PEs enable very high reuse of data, and through
efficient data management, PEs can be engaged in continu-
ous computations while data is communicated via memories
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Fig. 1. (a)–(b) Convolution of a 5×5 image (single channel)
with 3×3 weights of 2 filters. (c) Dataflow accelerator with
3×3 PEs accessing 16B RFs and 256B shared SPM (8 banks).
(d) Spatiotemporal execution of loops on the accelerator.

[5, 6]. Thus, with minimized execution time, dataflow accel-
erators yield very high throughput and low latency.

The vast mapping space and accelerator design space
make it challenging for programmers to determine efficient
ways of executing various convolution layers on a single
accelerator and for hardware designers to explore efficient
architecture for accelerating multiple layers of different CNN
models. This is because, convolution layers feature 7-deep
nested loops, exhibiting many ways of the data reuse and
spatial execution. For example, PEs can process different
subsets of the computational graph (e.g., different outputs
in an output stationary dataflow [Oy|Ox] of Fig. 1(c)–(d),
with unrolling of Oy and Ox loops on PEs for spatial exe-
cution [6, 8]). Moreover, the accesses of data tensors from
the on-chip scratchpad (L2) and off-chip (L3) memory can
be scheduled in many ways, impacting the reuse of the data
available in the registers and SPM [6, 7, 8, 9]. Thus, it opens
up many implementation choices for architecture design in-



cluding varying sizes and configurations of PEs, RFs, SPM,
and for each design, many ways to execute the loops both
spatially and temporally onto the computational and memory
resources of the accelerator [5, 6, 8].

These different ways or ”execution methods” significantly
impact how PEs process different subset of the tensor data,
data accessed from memories, data communication via inter-
connect, etc. [5, 6, 8], and therefore, have a dramatic impact
on the energy consumption and execution time [7]. Due to
the lack of a tool for systematic and efficient exploration of
the vast design space, experts have considered only certain
ways like row-stationary or output-stationary dataflow mech-
anisms [5, 10, 11], or explored a tiny fraction of the space
during manual optimizations [9] or randomization-based ex-
plorations [12]. This may not always be very efficient for
accelerating convolution layers of different shapes and ten-
sors of different sizes. Moreover, tools [7, 11, 13] analyt-
ically evaluate dataflow acceleration, but they either do not
optimize the execution time of convolutions or lack a detailed
performance model which accounts for the miss penalty and
stall cycles for PEs due to data communication via memo-
ries and interconnect. Lastly, [14, 15, 16] employ software
pipelining and achieve instruction-level parallelism while ex-
ecuting loops on dataflow accelerators with a few PEs. How-
ever, without exploring abundant data- and thread-level par-
allelisms, they may not efficiently map loops on accelerators
with large PE-arrays accessing larger memories. So, it is cru-
cial to automatically optimize the execution method for effi-
cient acceleration of a convolution layer on a target dataflow
accelerator and to explore efficient accelerator design for dif-
ferent convolution layers of multiple CNN models [5, 6].

We propose dMazeRunner framework that automatically
and efficiently optimizes the execution of different convolu-
tion and FC layers on dataflow accelerators. In particular,
(i) Users can specify the targeted convolution or matrix multi-
plication operation and accelerator architecture specification
and the execution method of their choice, for which the frame-
work provides estimations of the execution metrics.
(ii) dMazeRunner automatically optimizes execution meth-
ods for a specific or all convolution and FC layers of DNN
models, such that even non-expert programmers can quickly
explore the execution space for an accelerator architecture.
Several optimizations to prune the search space and multi-
threaded implementation enables the explorations of opti-
mized execution methods within a few seconds.
(iii) dMazeRunner allows designers to explore efficient accel-
erator designs for various convolution layers of CNN models.
(iv) Leveraging the TVM environment [17], our framework
supports optimizations for CNN models from multiple ma-
chine learning libraries like MXNet and Keras. It is available
at https://github.com/cmlasu/dMazeRunner.

Our experiments on different convolution layers from the
widely used ResNe(X)t model demonstrate that dMazeRun-
ner can optimize execution of convolutions on a dataflow ac-

celerator with various dataflow mechanisms; achieved execu-
tion methods exhibit higher architectural resource utilization,
reuse of multiple data tensors in memories, low accesses to
off-chip memory, with almost entire execution time spent in
performing useful computations on PEs. Using dMazeRun-
ner, users can automatically optimize execution methods for
convolutions of CNN models within a few seconds and ex-
plore efficient designs of dataflow accelerators.

2. DMAZERUNNER

2.1. Analyzing Execution Methods for Convolutions

dMazeRunner allows programmers to define parameters of
their convolution or FC layer (tensor sizes, strides, batch
size), accelerator architecture, and the execution method of
their choice (tiling and ordering of loops) for managing spa-
tiotemporal execution. Then, it analyzes these inputs through
an analytical model (proposed in [8]) and provides the estima-
tion of execution metrics i.e., execution cycles, energy con-
sumption, and energy-delay product. Since domain-specific
dataflow accelerator designs are simpler, it is feasible to
achieve a near-actual estimate of the execution metrics by
considering the execution patterns throughout the accelera-
tor architecture. From the specified convolution parameters
and architecture, dMazeRunner determines the computation
and communication patterns, including reuse of the data in
memories and among PEs, accesses to off-chip memory, miss
penalty, data distribution via network-on-chip, and inter-PE
communication for reduction operations. Users can vary ar-
chitecture specification in terms of organization of the PEs,
sizes and configurations of the private and shared memo-
ries for PEs, interconnect, and direct memory access (DMA)
model. Thus, programmers and domain-experts can explore
the impact of different mappings of the various convolution
layers onto dataflow accelerators.

2.2. Optimizing Accelerations of CNN Models

With the vast space of execution methods, it is hard for non-
expert programmers to figure out optimized execution meth-
ods for efficient accelerations. Moreover, depending on the
model, its depth (total layers) and shape of each convolution
layer (number of channels, aka width, and height and width
of the image or filter data, aka resolution) vary significantly
[18, 19]. With continuous advances in DNN model devel-
opment, it becomes challenging for even domain experts to
quickly explore efficient execution methods or accelerator de-
signs for new models.

dMazeRunner facilitates optimizing execution methods
so that the programmers and architects can determine effi-
cient execution methods for specified convolution layers as
well as for the entire CNN models from machine learning
libraries like MXNet and Keras. Using analytical models,
it quickly determines the effectiveness of many execution

https://github.com/cmlasu/dMazeRunner


methods. dMazeRunner’s auto-optimizer employs a search
reduction heuristic [8], which focuses on highly efficient
methods that make high utilization of architectural resources
of the accelerator and require fewer accesses to off-chip
memory. Moreover, its multi-threaded implementation along
with caching of the commonly invoked routines yield quick
optimizations. For example, on an Intel i7-6700 quad-core
platform, dMazeRunner optimizes execution of different
convolution layers of ResNet [1] in a second or a few and
AlexNet and ResNet18 models in about 18 and 180 sec-
onds, respectively. It outputs the execution methods which
are optimized for minimizing execution time, energy, and
energy-delay-product (EDP), along with the corresponding
estimates of the execution metrics.

Furthermore, dMazeRunner does not preclude the expe-
rienced programmers from performing a directed exploration
of the search space, but rather enables a quick and systematic
search. It provides support for a few common in-built opti-
mization strategies for experts to flexibly explore the space.

2.3. Exploring Efficient Accelerator Designs

dMazeRunner framework allows fast design space explo-
ration (DSE) so that the accelerator designers can quickly
land upon better architectural design solutions, e.g., fine-
tuning the memory sizes. This is because, with analytical
models, dMazeRunner can quickly explore efficient exe-
cution methods for executing convolutions on a variety of
dataflow accelerator architectures. For example, for DSE,
users can specify variations in sizes of register files, scratch-
pad memory, and total PEs, and can explore the implications
of different designs. The framework processes each design
point and evaluates it by finding optimized execution methods
and provides estimates of the execution metrics for the de-
signs. Then, dMazeRunner outputs information about design
variations, EDP, total mappings evaluated for a design point,
and the time taken to evaluate each accelerator design.

3. EXPERIMENTAL METHODOLOGY

CNN models: For evaluating the execution methods opti-
mized by dMazeRunner, we consider various convolution lay-
ers from widely used CNN models ResNet [1] and ResNeXt
for classifying images from ImageNet dataset. We executed
models on dMazeRunner with a batch of 4 images.
Specification of target accelerator: Our dataflow acceler-
ator architecture features 16×16 PEs with 16-bit precision.
PEs access private 1024B double-buffered RFs and a 128 kB
shared double-buffered scratch-pad [20]. Each pipelined PE
features a 2-stage multiplier and an adder. The accelerator
exhibits four single-cycle multi-cast networks [5] for com-
municating the tensor data to PEs and one such interconnect
enables inter-PE communication to perform reduction opera-
tions. The global scratchpad memory houses 64 banks (2 kB
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Fig. 2. For ResNet layers, dMazeRunner achieves efficient
execution methods with multiple dataflow mechanisms.

each) for storing the data of tensors. DMA controller commu-
nicates the data between DRAM and the scratchpad memory.
Our DMA latency model for data transfers is the same as Cell
processors that featured scratchpads [21]. We model the en-
ergy consumption of accelerator resources as per hardware
evaluations by Yang et al. [6] for a 28 nm technology.

4. RESULTS AND ANALYSIS

4.1. Validation

Using the same architecture specification, we obtained the op-
timized execution methods through DNN optimizer of [6] and
evaluated our model for accelerating ResNet conv5 2. For
different dataflow execution methods, our analytical model
achieved the same PE utilization as Yang et al. [6, 13], and
the energy consumption (in mJ) for estimated by dMazeRun-
ner closely matched the energy estimated by [13] with a dif-
ference of 4.19% on average. In fact, for highly optimized ex-
ecution methods, the energy estimation for register accesses
was the major component, while the energy estimation for
off-chip memory accesses was very low.

4.2. Optimized Dataflow Executions

Fig. 2 demonstrates the evaluation of optimized execution
methods for different dataflow mechanisms. The primary
axis shows the EDP of each convolution layer and the sec-
ondary axis shows the total execution cycles for these six
layers (lower the better). For better visualization, we plot
EDP results on a logarithmic scale.

dMazeRunner can optimize the execution of convolution
layers for multiple dataflow mechanisms, which can be visu-
alized in Fig. 2 (bars of nearly the same height). There are
two reasons: (i) Highly optimized execution methods exhibit
common characteristics [6] including high utilization of ar-
chitectural resources (PEs, registers, scratchpad), higher reuse
of different data tensors at different levels of memory hier-
archy, lower accesses to off-chip memory, efficiently inter-



Table 1. dMazeRunner drastically reduces the vast space of
valid execution methods for optimizing DNNs acceleration.

ResNet
Conv

Layers

Loop
Tilings

Loop
Orderings

dMzRnr
explored
Tilings

dMzRnr
explored

Orderings
1 1.2E+08 7!×7! 46812 3×3

2 2 1.1E+09 7!×7! 122092 3×3
3 2 6.2E+08 7!×7! 53690 3×3
4 2 1.8E+08 7!×7! 10938 3×3
5 1 1.4E+07 7!×7! 877 3×3
5 2 1.7E+07 7!×7! 753 3×3

leaved computation with communication of data (such that
PEs do not need to stop computation while waiting for newer
data to process), etc. (ii) For efficient spatiotemporal exe-
cution, often execution methods feature spatial execution of
multiple loops, which leads to the similar or the same execu-
tion methods for multiple dataflow mechanisms.

For example, for executing ResNet conv5 2 with out-
put stationary dataflow, dMazeRunner’s execution method
allocated 36 elements of image tensor (I), 144 elements of
weights (W ), and 64 elements for output tensor (O) (244
from 256) in RFs, achieving image and weight reuse through
processing the data of 4 images and 16 filters simultaneously.
Cycles for performing Multiply and ACcumulate (MAC) op-
erations on this data in the registers were 576, which per-
fectly interleaved with the communication latency of 576
cycles (to communicate 4×1×9×9 = 324 elements of I and
64×1×3×3 = 576 elements of W via different interconnects).
Data elements of O (4×64×7×7 = 12,544) were reused in
RFs by accumulating partial summation during 8 consequent
execution passes. Thus, execution pass latency was 576 cy-
cles, and 8 passes processed the data from the scratchpad
memory (4608 cycles). Again, this execution was efficiently
interleaved with the latency to communicate the data of I and
W tensors from off-chip memory to a double-buffered SPM
via DMA transfers (3641 cycles). Considering the stall cy-
cles for writing back the data of output tensor, total execution
cycles were 2,459,648, which exceeded an ideal execution
time (2,359,296 cycles for executing 462,422,016 MACs on
4×7×7 PEs) by a mere 4%. Thus, dMazeRunner achieves
highly optimized and non-intuitive mappings that account for
multiple factors attributing to efficient accelerations.

4.3. Efficient Exploration of Execution Methods

Table 1 shows the valid execution methods (brute-force
search) and the methods explored by dMazeRunner. These
execution methods feature different ways of tiling the loops
for spatiotemporal execution and loop orderings (per each
way of tiling) for scheduling data transfers. dMazeRunner
drastically pruned orderings of the loops from 7!×7! to 3×3.
Moreover, its search reduction heuristics targeted highly
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Fig. 3. Optimizing designs for different convolution layers.

optimized execution methods that exhibited at least 80% uti-
lization of PEs, 80% of RFs, and 50% of SPM. dMazeRunner
also discarded execution methods that required many non-
contiguous data accesses to off-chip memory and inter-PE
communication for the spatial accumulation of output tensor.
Overall, for optimizing executions of these six convolution
layers, dMazeRunner reduced exploration of the total ways of
tiling the loops by 9020×, re-ordering the loops by 2.82E+06
times, and execution methods by 2.55E+10 times.

4.4. Design Space Exploration

To explore efficient designs, we varied the sizes of the on-chip
memories and PE-array (varying a parameter at a time). We
limited total on-chip memory up to 512 kB for RFs (a total
for all PEs) and 8 MB for the shared SPM. Fig. 3 shows the
achieved EDP (summation of the EDP for each of six convo-
lution layers) when PEs vary from 64 to 8192; memory sizes
are optimized for each configuration of the PE-array size.

When total PEs are considerably small, scaling of the EDP
is faster, since an efficient mapping would almost linearly in-
crease the throughput. The increase is marginal beyond the
total of 1024 PEs. For the designs with 8192 or more PEs,
the EDP summation increases because efficient partitioning
of the spatiotemporal execution of loops becomes challeng-
ing with considerably larger arrays; poor resource allocation
can easily impact the EDP. Similarly, the communication re-
quirements increase considerably for a larger PE array, which
directly impacts the overall execution time.
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