Appears in the 21°¢ International Conference on Design Automation and Test in Europe (DATE), 2018

URECA: A Compiler Solution to Manage
Unified Register File for CGRAs

Shail Dave, Mahesh Balasubramanian, Aviral Shrivastava
Compiler Microarchitecture Lab, Arizona State University, Tempe, AZ
Email: {shail.dave, mbalasu2, aviral.shrivastava} @asu.edu

Abstract—Coarse-grained reconfigurable array (CGRA) is a
promising solution to accelerate loops featuring loop-carried
dependencies or low trip-counts. One challenge in compiling
for CGRAs is to efficiently manage both recurring (repeatedly
written and read) and nonrecurring (read-only) variables of
loops. Although prior works manage recurring variables in
rotating register file (RF), they access the nonrecurring variables
through the on-chip memory. It increases memory accesses and
degrades the performance. Alternatively, both the variables can
be managed in separate rotating and nonrotating RFs. But,
it increases code size and effective utilization of the registers
becomes challenging. Instead, this paper proposes URECA, a
compiler solution to manage the variables in a single nonrotating
RF. During mapping loop operations on CGRA, the compiler
allocates necessary registers and splits RF in rotating and
nonrotating parts. It also pre-loads read-only values in the unified
RF, which are then directly accessed at run-time. Evaluating
compute-intensive benchmarks from MiBench show that URECA
provides a geomean speedup of 11.41x over sequential loop
execution. It improves the loop acceleration through CGRAs by
1.74x at 32% reduced energy consumption over state-of-the-art.

I. INTRODUCTION

The need for faster and power-efficient processors paved
the way for multi-cores along with considerable research in
accelerators. ASIC accelerators are efficient but suffer from
poor usability. Although popular, acceleration benefits through
GPUs are often limited to parallel loops and loops with high
trip-counts [1]. Field programmable gate arrays (FPGAs) are
reconfigurable and general-purpose but are marred by low
power efficiency due to fine-grained management [1].

CGRA is an attractive alternative, as programmable, yet
power efficient accelerator that is quite popular in embedded
systems for streaming and multimedia applications [2]-[4].
CGRA is simply an array of processing elements (PEs) in-
terconnected by a 2-D network. Each PE consists of an ALU-
like functional unit and a register file (RF). At every cycle,
instructions are issued to the PEs. The PE gets the inputs from
the neighboring PEs, itself, and registers and executes some
operation. Then, it writes the result into RF and to the output
register, from which neighboring PEs may read the result in
the next cycle. The PE optionally sends/gets the data to/from
the data memory. CGRA achieves higher power efficiency due
to simpler hardware and intelligent software techniques.

A challenge for CGRA compiler is how to manage loop
variables efficiently. Recurring variables are repeatedly read
and written throughout the loop execution. Their outcomes
across multiple loop iterations need to be managed simultane-

ously. This is because of i) loop-carried dependencies and ii)
in a software pipelined schedule [5], operations from multiple
iterations are executed simultaneously. So, prior techniques
manage recurring variables in rofating RF's [5], preserving the
outcome of operations across multiple iterations. Rotation is
done in the hardware by either interchanging the data through
shift registers or by accessing different physical register at each
iteration [2]. However, storing read-only values in rotating
RF leads to accessing incorrect values. So, they are usually
managed through the memory [6]-[9]. Accessing memory
increases the number of loads and degrades the performance.
An alternative can be to access read-only values from a
separate global RF [3]. But, managing variables in separate
RFs requires larger RFs, resulting in poor register utilization.
It also increases the instruction width and hence, the code size.
This paper proposes URECA — a compiler solution to
manage all the loop variables in unified register file for
CGRA accelerators. Unified RF is a single nonrotating RF,
proposed in [10], which is local (i.e. within a PE). URECA
enables management of the both recurring and nonrecurring
values in the unified RF. Based on register requirements of the
operation being mapped on CGRA, the compiler dedicatedly
reserves the registers for recurring and/or nonrecurring values.
After mapping, it generates a configuration instruction to split
the RF into rotating and nonrotating parts. This enables the
hardware of the RF to flexibly support a different number of
registers for storing both recurring and nonrecurring variables,
for mapping of different loops. Moreover, URECA generates
machine instructions to pre-load the nonrecurring variables
into registers of the RF before loop execution. As unified
RF is nonrotating, read-only values are then directly accessed
during loop execution. Furthermore, our solution can be easily
integrated with any mapping technique for CGRAs.
Evaluating compute-intensive applications from MiBench
[11] shows that URECA improves CGRA’s loop acceleration
capability by 1.74x with 32% reduction in energy consumption
as compared to CGRA accessing constant memory. It also
reduces the number of registers needed by 39% in comparison
with CGRA managing variables through two separate RFs.

II. MANAGING LOOP VARIABLES IN CGRA EXECUTION

To accelerate loops on a CGRA, a target application is
profiled and compute-intensive loops are extracted. For each
loop, a data dependency graph (DDG) is generated by pars-
ing the intermediate representation (IR) [12]. As shown in

(b) ' (c)

Fig. 1. (a) DDG of a critical loop with loop-carried dependence, (b) a 1x2
CGRA. (c) a register aware mapping of (a) on (b) with II=3

Fig. 1(a), DDG is a directed graph D=(V,E); nodes V represent
the operations to be executed by PEs and edges E represent
data dependencies among the operations. An iterative modulo
schedule [5] is generated for DDG and operations are mapped
on PEs in a software pipelined manner. For example, a valid
mapping of DDG of Fig. 1(a) on a 1x2 CGRA of Fig. 1(b)
is shown in Fig. 1(c). Node a of the i*" iteration is mapped
to PE; at time t+1. Nodes b, ¢ and d are mapped to PE> at
consequent timings, honoring the data dependencies. Node [
is a live-in value and is always loaded by PFE;. In an iterative
modulo schedule, the constant interval between the start of
successive iterations is referred as Initiation Interval (II) [5],
which is the performance metric. In this example, operation
‘a’ executes after every 3 cycles and hence, II is 3 cycles.
Mapping 5 operations on 2 PEs requires at least 3 cycles.
Thus, obtained II is Minimum II (MII) [5]. There are various
techniques to obtain the mapping [2], [3], [9].

Need to Manage Recurring and Nonrecurring Variables:
Mapping loop operations to CGRA PEs require management
of two kinds of variables — i) recurring and ii) nonrecurring.
Recurring values are repeatedly read and written throughout
the loop execution. For example, in a software pipelined
schedule, outcomes of a node execution across few iterations
are stored in the registers and as a result, the liveness of the
same variable may overlap [2], [5]. Additionally, in acceler-
ating loops with loop-carried dependency, the data values are
required across iterations [5]. For example, Fig. 1(a) indicates
a recurrence through an arc d — b, with weight of 2. Hence,
node b of i'" iteration (b’) needs data from previously executed
node d’~2. This implies that every value of d for 2 iterations
must be stored in 2 different registers of the RF.

To address the issue of overwriting recurring values, rotating
RF is used [2], [5], [13]. For example, Fig. 1(b) shows that
each CGRA PE has a rotating register with a depth of 2 (total
2 registers R1 and R2 to hold 2 different values of a variable).
In the mapping of Fig. 1(c), operation d executes on PFEs and
always writes to R1 and b reads from R2. At time t+1, ¢~}
writes its value into R1 of PE5. R2 of PFE5 contains the value
of previously computed d*~2, which is read later at time t+2
to compute b’. For correct execution, rotation of the register
values occurs at every II cycles (shown by exchanging the
values of R1 and R2 at the beginning of t+3). After rotation,
R1 of PE, contains unwanted value d*~2 which is overwritten

by new value d’ at time t+4. Thus, rotation helps preserving
d’~! into R2 which is needed by b**! at t+5 (not shown).

CGRA PEs also need to access nonrecurring variables like
read-only operands, live-in data (values needed for loop exe-
cution) etc. They are frequently accessed throughout the loop
execution and should be stored in registers. But, if managed
in rotating RF, they undergo the rotation. It causes either the
register value to be overwritten or PEs access incorrect values.
This results in incorrect execution. For example, operation
a needs to access live-in value [which cannot be stored in
the rotating registers. Hence, PFE; always loads [from the
memory throughout the loop execution. Alternatively, such
nonrecurring values can be managed in a separate nonrotating
RF. But, managing both recurring and nonrecurring values
separately has been inevitable.

III. LIMITATIONS OF PRIOR APPROACHES

Majority of prior compiler solutions manage recurring vari-
ables in local registers of PEs and nonrecurring variables
through memory. Alternatively, variables can be managed in
separate RFs, recurring in local rotating RFs, nonrecurring in
a global nonrotating RF. Fig. 2(a) shows CGRA managing
nonrecurring values in constant memory (L1 cache or a
memory bank in scratch-pad memory) [6]-[9]. In some CGRA
designs, only specific PEs can access constant memory; a
constant is placed and routed through a PE [14]. Accessing
memory is simple, but it results in extra load operations during
each loop iteration, which can degrade the performance. In
fact, adding more loads can be much more harmful because
of 2 reasons: i) in most CGRAs, only a few PEs can perform
memory operations [2], [3], ii) Often load/store bandwidth is
limited, e.g., data and address buses are usually shared by PEs
in row [8], [9]. Such restrictions along with more operations to
be mapped and executed on CGRA PEs result in higher II i.e.
more execution cycles. It also increases the code size as we
need to manage more CGRA instructions with the increased II.
Besides, managing nonrecurring variables in memory require
larger data memory throughout the execution.

CGRA mapping technique proposed by Oh et. al. [3]
considered the issue of increased memory accesses. They
suggested reserving the nonrecurring values into a separate
global RF. As shown in Fig. 2(b), global RF is accessed by
all PEs, allowing data sharing between PEs without external

Constant Memory

Shared Address/Data bus

(a)

Fig. 2. CGRAs manage recurring variables in local rotating RFs. For
nonrecurring values, CGRA accesses (a) on-chip memory (b) a global RF;
each PE is connected to global RF through column-wise bus structure

|

routing. Experiments have shown that it is crucial to connect
all PEs to global RF [15], which requires many R/W ports,
resulting in performance degradation and increased total area
[15]. Furthermore, accessing separate RFs burdens instruction
set architecture (ISA) and increases instruction width. For ex-
ample, a 32-bit instruction for a PE requires — 5 bits for opcode
field, 2x3 bits for selecting input through 2 multiplexers for
two operands and 3x2 bits for indexing register number to
access a local RF with 2 read and 1 write port; RF contains
4 registers. Moreover, 1 bit is needed for each of — indicating
RF write, asserting address bus and asserting data bus. Finally,
the immediate field consists of 12 bits. Now, consider CGRA
of Fig. 2(b) that manages recurring values in local RF of 4
registers and read-only operands in a global RF of 64 registers.
Then, we need 18 bits just to index registers of the RF; PE
can get 2 inputs from RF and writes back to the RF (i.e.
3x6). Managing 2 separate RFs requires selection between
RFs for each register index field (i.e. 3 more bits). Hence,
such approach increases instruction width to 47-bits from 32-
bits when compared to CGRA with a local RF of 4 registers.
It increases memory bus width and the code size.

True that we can have separate rotating and nonrotating
RFs to manage recurring and nonrecurring variables [3], [13].
But, efficient utilization of registers becomes a challenge. This
is because different loops in target application(s) require the
different number of rotating and nonrotating registers. For
example, some loops may feature loop-carried dependencies
with larger distance whereas, operations of some other loops
may need many live-in values. So, if any of the rotating and
nonrotating RF is of smaller size, then a mapping may not
be achieved. CGRA with larger rotating and nonrotating RFs
not only end up with poor utilization of registers but also
consume more area and power. Plus, managing separate larger
RFs increases the instruction width and hence, the code size.

Instead, this paper proposes to manage all the variables in
the unified RF. Unified RF [10] is a regular (i.e. nonrotating)
RF, which is configurable. Our solution targets local unified
RF, as local RFs are smaller, scalable and help to obtain
the better performance [3]. The compiler allocates necessary
registers and configures the RF dynamically, splitting it into
rotating and nonrotating parts.

IV. URECA: EFFICIENTLY MANAGE ALL VARIABLES IN
SINGLE RECONFIGURABLE REGISTER FILE

To manage both recurring and nonrecurring variables in an
efficient manner, this paper presents URECA, a compiler solu-
tion to manage all the variables in the unified RF, with the least
number of registers. During mapping of each loop operation on
a CGRA PE, compiler analyzes the number of registers needed
to store recurring and/or nonrecurring values in RF within a
PE. An operation is mapped only if registers are available.
After register allocation, RF configuration is generated to split
the RF in rotating and nonrotating section. While the hard-
ware of the unified RF implements rotation through modulo
addition and allows the access to correct recurring values, our
compiler pre-loads the nonrecurring variables into registers of

the nonrotating section. These nonrecurring variables are then
directly accessed from the RF throughout the loop execution.
During allocating registers for nonrecurring values, compiler
employs data reuse analysis to avoid duplication; same value
can be used by numerous operations mapped on a PE.

A. Accessing Right Registers in Unified RF

The unified RF [10] is shown in Fig. 3, which can be split
into the rotating and nonrotating parts with the configuration
value c. URECA generates the configuration value and a
machine instruction to dynamically set the value c prior the
loop execution. It provides CGRA compiler the flexibility to
support different register requirements for different loops.
Accessing Nonrotating Section: The register index for
the read and write operations is indicated by readRegl,
readReg2 and write, respectively. If the register index is
greater than c then, the control unit generates a select signal
as 1. Then, a PE directly accesses the register inside the
nonrotating section. For example, if RF has a total n = 6
registers, the value of ¢ = 3 implies that there are 4 registers
in rotating section and 2 in a nonrotating section. In this case,
a read operation with index readRegl = 5 enables accesses
to the register 5 inside nonrotating part. Register 5 contains
a nonrecurring value, that directly drives the read port. Note
that for the unified RF of each PE, such nonrecurring variables
are pre-loaded into corresponding registers through machine
instructions, at the beginning of the loop execution.
Accessing Rotating Section: If the register index is less
than or equals to ¢, we need to access the rotating section.
The RF is nonrotating and hence, it eliminates the use of
complex structures such as shift registers. Instead, the rotation
is implemented by a modulo addition of the register index with
a stage counter [2]. The stage counter (SC) is incremented at
the end of every II cycles and is reset to O when it reaches the
value of c. The outcome of the adder is ANDed with ¢ to get
the modulo addition. This mechanism helps to access different
physical registers at each loop iteration. For example, we want
to access values of a variable d across 4 different iterations.
We read the value of d*~3 through index readReg2 = 0 and
we overwrite the new value of d’ with the index write = 3.
In such scenario, a select signal is always 0. For SC = 2
(iteration i = 10), the summation of SC' with readReg2 is

Stage Counrﬂ

2
Incremeénts at log n Al
every Il cycles >

Set Configuration
value ‘¢’

Unified Register File

5 i $ 0
RN TN U= R
Read ' H o o R1 1 Rotating
H gn datal
regl.99 i)L H . > Section
voe) 32
>

Read_logn |
reg2

Non data2

[SR IeRe-LEECL LELEELEE 32 Rotating >
Write log n: > 5 1 D logn WV Section | s

v T PR > =

Fig. 3. Unified RF [10] can be split into rotating and nonrotating sections.
The compiler configures the RF through a machine instruction.

2. Then, modulo operation through ANDing yields access to
the physical register of index 2 that contains d”. Similarly,
physical register 1 is selected to overwrite with the newest
value d'°. And, physical registers with index 3 and 0 still
preserve the older values d® and d°, respectively. Thus, we
can manage both recurring and nonrecurring variables in a
single RF; RF configuration splits RF into two parts.

B. How Compiler Determines Register Requirements?

In CGRA compiler, register allocation is integrated with a
place and route stage of the mapping and the operation is
placed on the PE only if the required number of registers
are available. So, during mapping an operation on a PE, our
compiler analysis determines the number of registers needed
for both, 1) storing nonrecurring variables ii) managing recur-
ring values. It reveals the total number of registers required
inside rotating and nonrotating section of unified RF. The
number of nonrotating registers needed is easily determined
from the live-in operands in DDG (with a liveness analysis
through use-definition chains [12]). Plus, if the value of a
constant operand is larger than the maximum value supported
by immediate bits in the CGRA instruction then, it is also a
nonrecurring variable. During register allocation, data reuse
analysis is employed to avoid duplicating the nonrecurring
value in the RF. For example, multiple operations often require
the same live-in value. So, when they are mapped on the same
PE, reuse analysis avoids storing redundant values in the RF.

Algorithm 1 shows how compiler analyzes registers for
recurring values. First, it finds out the information about
successor nodes that access the outcome through registers, due
to either intra-iteration dependency or a loop-carried depen-
dence. Based on the scheduling and mapping information, the
compiler calculates a difference of absolute mapping times
of a node and its successor (in terms of II cycles). Finally,
with calculated mapping distance, it computes the number of
rotating registers required to map a node v; on PE p;.

C. URECA Ensures Efficient Management in Single RF

Upon determining the total registers needed to manage both
the variables, the compiler ensures availability of registers
prior to their reservation. For mapped operations, it keeps track
of register allocation per PE, as shown in Algorithm 2. For a

Algorithm 1: get Rotating Reg(Input Node v;, PE p;)

1 (successors, total_successors) <—get_successors(v;);
while i < rotal_successors do
8; < successors|[i];
if (isMoreThanACycleApart(v;, s;)) then
distance < calculate_distance(v;, $;);
reg_needed <— distance + 1;
if (reg_needed > rotating_reg) then
‘ rotating_reg < reg_needed;
++;
0 return rotating_reg;

2
3
4
5
6
7
8
9

—

Algorithm 2: allocate Regs(Input PE p;, Size N,Node v;)

r1 < getRotatingReg(v;, p;);
r9 < get_number_of_nonrotating_registers(v;, p;);
r] get_nearest_power_of_two(rotating[p;| + 71);
total <—] + (nonrotating[p;] + r2);
if total < N then
rotating[p;] += r1; nonrotating[p;] += r2;
configuration[p;] <— r}; return true;
return false;

0 NN U R W N =

PE p;, rotating[p;] indicates the number of registers allocated
previously in the rotating section. The compiler ensures that
new size of rotating section 7] is equal to the nearest power of
2, satisfying constraint due to implementing modulo addition.
If enough registers are available to map a new operation v;,
then the allocation is done and the function returns success
(lines 5-7). Once all operations are mapped, instructions to
configure RFs of PEs is generated based on the value of
configuration[p;], and fed to control unit of Fig. 3 at run-time.

Unlike prior compilation approaches for existing CGRA RF
designs, URECA manages the variable number of the recurring
and/or nonrecurring values in the unified RF, supporting differ-
ent mappings of different loops. Thus, URECA enhances the
capability of the compiler to efficiently and flexibly manage
the variables in a single RF of limited size, promoting general-
purpose computing on CGRAs.

D. Integration with CGRA Mapping Techniques

Fig. 4 shows a high-level overview of the compilation
flow. Input DDG is translated to a set of clusters/cliques.
Then, the compiler tries to map the operation on a PE. If
it finds a PE slot, it checks for register availability inside
the unified RF else, it finds another PE. If no other PE is
available, it increases II by 1. Register reservation is done
through Algorithm 2. If II value crosses the preset limit, it
terminates the mapping, resulting in failure. Upon successfully
mapping all the operations, a valid mapping is generated along
with machine instructions to configure the unified RFs and to
preload nonrecurring values. In this way, our solution can be
easily integrated with any CGRA mapping technique.

[C] nput/output
] Enhanced steps to

l Input Data Dependency Graph ‘

l Generate Edge Set/Clusters/Cliques ‘

integrate URECA
I — Mil
3 e—1l+1
l Calculate Costs/Reserve Resources ‘ N

o
11> Total ¢
Attempts?
o

Mapping
Failed

All Nodes Mapped? t
= N
Configurations l Select Target Node & PE ‘

Mapping
Succeeded

Generation of
Machine Code

(Configure RFs,
Pre-load Values)

—‘ Update Costs/Resources ‘

Fig. 4. Integrating Register Reservation Function with a Mapping Technique

1.00

HM N

susan_ adpcm gsm_ gsm_
smooth _enc long short

0 CM+LRRF 7 URECA

) 0.85
Higher the better

lo

susan jpeg adpcm
_edge _enc _dec

o
N
a

Mil/ 1l
o
8

0.

N
«

0.

o

sha bitcount geomean

Benchmark

Fig. 5. URECA manages all variables within local unified RF, achieving II
close to Minimum IT (MII) as compared to CGRA accessing constant memory.

V. EXPERIMENTAL SETUP

Benchmarks: We profile MiBench benchmark suite [11] with
Alinea Map and Intel Parallel Studio XE tools and deter-
mine the top non-vectorizable performance-critical loops in
compute-intensive applications. These benchmarks represent
the workloads in the fields of security, telecom, automotive
etc. and can benefit from acceleration through CGRAs.
Compilation: The mapping is obtained through REGIMap
[9], which maps operations with a clique based approach; the
corresponding rotating RFs of the PEs should have enough
rotating registers. Instead, we modify the register allocation
constraint (with Algo. 2) to target unified RF, accommodating
both recurring and nonrecurring values for the operation. Our
CGRA compiler is implemented in LLVM 4.0 [12] as a pass.
We use optimization level 3 and also consider loops accessing
sub-words/pointers or loops with dynamic trip-counts.
Simulation: Techniques are evaluated on popular cycle-
accurate simulator gem5 [16] in system emulation mode; we
modeled CGRA as a separate core coupled to ARM Cortex-
like processor core with ARMv7a profile. In a 4x4 homoge-
neous CGRA, PEs are connected in a 2D torus, performing
fixed-point operations with 1-cycle latency. PEs access data
and instruction memories of 4 kB; memory bus is shared
among PEs in a row. For load/store operation, 2 instructions
are executed; 1°¢ generates address and 2nd gads/stores data.
Techniques Evaluated: In evaluating prior works, CGRA
manages recurring variables in local rotating RF (LRRF) of 4
32-bit registers [2]. With 12-bit immediate in our ISA, con-
stants greater than 4095 are treated as nonrecurring variables.
In state-of-the-art approach (i.e. CM+LRRF), CGRA man-
ages nonrecurring values by accessing 4 kB of data memory
(CM). We also evaluate an alternative of managing them in
separate global nonrotating RF (GNRRF) of 64 registers (i.e.
GNRRF+LRRF). However, URECA is evaluated with a unified
RF [10] for each PE, with 4 registers. RF configuration takes
1 cycle and a variable is preloaded in 3 cycles. We implement
RTL for CGRA, mapping it to Synopsys 32nm process and
synthesize it with Cadence RTL compiler (Table).

VI. RESULTS AND ANALYSIS

A. URECA Improves CGRA’s Loop Acceleration Capability
by 1.74x over CGRA Accessing Constant Memory

Fig. 5 shows that employing URECA achieves the mapping
of nearly ideal quality. For each performance-critical loop, we
measure mapping quality as a ratio of MII to II, since values
of II span over a larger range. In CM+LRREF, the nonrecurring

100

, 11.41x
1 6.57x

=

0

1

Speedup

|

gsm_
short

|

susan jpeg
_edge _enc

[}l

susan_ adpcm gsm_
smooth _enc long

Nl

sha bitcount

o

1 adpcm

dec geomean

1 Sequential Exec 0 CM+LRRF 2 URECA Benchmark

Fig. 6. URECA helps CGRA to accelerate loop execution cycles by 11.41x
over sequential execution on ARM Cortex-like core with ARMv7a profile.

values were accessed from memory, increasing nodes by 50%.
It increased II by 1.75x due to bandwidth restrictions as only
1 PE among 4 PEs in a row can access memory bus at a
time. For example, the critical loop of sha translated to a
DDG with 30 nodes (including 10 load/store nodes) and 9
nonrecurring values. This resulted in additional 18 load nodes
and in II of 8 for CM+LRRF, while URECA achieved MII
of 3 honoring the resource constraints. However, the critical
loop of adpcm encoder featured a loop-carried dependence
with distance 1 and about a delay of 20 operations in the
path. So, all approaches easily obtained mapping at higher
I (recurrence-bounded). Fig. 6 shows that better mapping
provided acceleration of 1.74x in terms of loop execution cy-
cles (including RF configuration/pre-loading cycles). URECA
promoted variables to registers from memory, helping CGRA
to accelerate loops by 11.41x over sequential execution.

B. URECA Reduces Energy Consumption by 32% in Compar-
ison with CGRA Accessing Constant Memory

With critical path delay (D), power (P) (Table I), we
compute energy E as PxCxD [17], for loop execution
cycles C'. With a significant reduction in execution time,
URECA reduces energy consumption by 32% as compared to
CM+LRRF. Compiler solutions managing separate RFs e.g.
GNRRF+LRRF consume 5% higher energy than URECA and
increases code size by 50%, requiring 8 kB of instruction
memory. However, the code is partitioned for evaluation.

Here, an exception is the benchmarks where the perfor-
mance with unified or global RF ! is similar to the CGRA
accessing memory, e.g. adpcm encoder. Compared to LRRF,
unified RF has little higher cycle time and it takes some more
cycles for pre-loading constants. So, URECA consumes little
higher energy than CM+LRRF. In such scenario, employing
global RF is even worst (1.2x) as it consumes higher power
and yields larger cycle time because of all PEs accessing a
separate larger global RF via many R/W ports.

Although GNRRF+LRRF yields performance at par with URECA, it
increases the code size and results in poor utilization of the registers.

TABLE I
HARDWARE SPECIFICATIONS OF CGRA WITH DIFFERENT RFS AND 4 KB
OF DATA AND INSTRUCTION MEMORIES FOR 32NM PROCESS

RF Architecture Delay (ns) Area (mm?) Power(mW)
LRRF 1.94 1.062 365.26
Unified RF 2.10 1.097 366.69
GNRRF & LRRF 2.15 1.287 382.86

Normalized
Energy Consumption
°o
&

0.25
0

sha bitcount SYSaN- adpem - gsm_

smooth _enc long
[CM+LRRF & GNRRF+LRRF @ URECA

gsm_
short

susan jpeg
_edge _enc _dec

adpcm
average

Benchmark

Fig. 7. Normalized energy consumption for URECA and for CGRA managing
nonrecurring values in global RF when compared to the approach of accessing
nonrecurring variables from memory.

C. URECA Reduces Register Requirement by 39% as Com-
pared to CGRA Managing Two Separate Register Files

To demonstrate the impact of variable management by
URECA, we analyze RF size requirements for various ap-
proaches. A simple way can be to keep nonrecurring and
recurring values in 2 separate local RFs, local nonrotating
RF (LNRRF) and LRRF (i.e. LNRRF+LRRF). Other possible
solutions are GNRRF+LRRF and URECA. For each approach,
we obtain mapping with no constraint on RF size and deter-
mine the total number of registers needed. Our analysis reveals
that managing 2 separate local RFs is worst as there is no
data sharing. Although a GNRRF can help to share the data
among PEs, still many rotating registers in separate LRRFs are
left unutilized. In contrast, URECA provides CGRA compiler
the flexibility to allocate registers for both recurring and/or
nonrecurring values in the single RF and reduces total registers
required. For example, Susan smoothing requires 4 rotating
registers. Hence, we need LRRF of at least 4 registers for all 16
PEs. It also needs to manage 12 live-in/live-out values; some
PEs require 2 live-in values. Hence, LNRRF of 2 registers is
needed (total 32 + 64 registers for LNRRF + LRRF). Alterna-
tively, we need total 12 + 64 registers for accessing GNRRF
+ LRRE On the other hand, having URECA with just 4
registers in the unified RF (total 64) is enough. URECA easily
manages both types of variables in the unified RF, reducing the
register requirements. This greatly helps CGRA compiler to
generate the needed mapping. Furthermore, data reuse analysis
in managing nonrecurring values in RF also reduces register
requirements (especially for adpcm and gsm).

VII. SUMMARY

This paper presents challenges in the traditional approach of
the managing nonrecurring values through memory and shows
how it degrades the performance. The alternative of manag-
ing variables through separate RFs results in poor register
utilization and increases the code size. This paper advocates
for managing them in a unified RF and presents URECA
as an efficient solution. URECA generates the configuration
for the unified RF and allows it storing a different number
of recurring and nonrecurring values; register reservation is
done by the compiler unique to the loop requirement. After
evaluating the technique along with prior works, we conclude
that URECA improves acceleration capability of CGRAs by
1.74x at 32% reduced energy usage. Our solution manages
variables efficiently than other existing solutions.

9] %
e E
» 075 : -
w Xy
w ‘
o 0.5
(7]
N
T 025 ;
€ | E b
S
= 0 % d o3| X b 3 2 d».'-
) susan_ adpcm gsm_ gsm_ susan jpeg adpcm
sha bitcount rooth _enc long short _edge _enc _dec average
B LNRRF+LRRF £ GNRRF+LRRF @ URECA Benchmark

Fig. 8. URECA reduces register requirement significantly as compared to
CGRA managing the variables in separate RFs.

ACKNOWLEDGMENT

This work was partially supported by funding from the NSF
grants CCF 1723476, 1055094 (CAREER), and CNS 1525855.

REFERENCES

[1] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating
compute-intensive applications with gpus and fpgas,” in Application
Specific Processors, 2008. SASP 2008. Symposium on. IEEE, 2008.

[2] B. Mei, M. Berekovic, and J. Mignolet, “Adres & dresc: Architecture and
compiler for coarse-grain reconfigurable processors,” Fine-and coarse-
grain reconfigurable computing, pp. 255-297, 2007.

[3] T. Oh, B. Egger, H. Park, and S. Mahlke, “Recurrence cycle aware
modulo scheduling for coarse-grained reconfigurable architectures,” in
ACM Sigplan Notices, vol. 44, no. 7. ACM, 2009, pp. 21-30.

[4] B. Egger et al, “A space-and energy-efficient code compres-
sion/decompression technique for coarse-grained reconfigurable archi-
tectures,” in Proceedings of the 2017 International Symposium on Code
Generation and Optimization. 1EEE Press, 2017, pp. 197-209.

[5] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” in Proceedings of the 27th annual international
symposium on Microarchitecture. ACM, 1994, pp. 63-74.

[6] H.-S. Kim, M. Ahn, J. A. Stratton, and W.-m. W. Hwu, “Design eval-
uation of opencl compiler framework for coarse-grained reconfigurable
arrays,” in Field-Programmable Technology (FPT), 2012 International
Conference on. 1EEE, 2012, pp. 313-320.

[71 H. Lee, D. Nguyen, and J. Lee, “Optimizing stream program perfor-
mance on cgra-based systems,” in Proceedings of the 52nd Annual
Design Automation Conference. ACM, 2015, p. 110.

[8] G. Dimitroulakos, N. Kostaras, M. D. Galanis, and C. E. Goutis, “Com-
piler assisted architectural exploration framework for coarse grained
reconfigurable arrays,” The Journal of Supercomputing, vol. 48, 2009.

[9]1 M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Regimap: register-

aware application mapping on coarse-grained reconfigurable architec-

tures (cgras),” in Proceedings of the 50th Annual Design Automation

Conference. ACM, 2013, p. 18.

M. Hamzeh, Compiler and Architecture Design for Coarse-Grained

Programmable Accelerators. Arizona State University, 2015.

M. Guthaus et al., “Mibench: A free, commercially representative

embedded benchmark suite,” in WWC, 2001.

C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong

program analysis & transformation,” in CGO, 2004, pp. 75-86.

B. Van Essen, R. Panda, A. Wood, C. Ebeling, and S. Hauck, “Man-

aging short-lived and long-lived values in coarse-grained reconfigurable

arrays,” in Field Programmable Logic and Applications (FPL), 2010

International Conference on. 1EEE, 2010, pp. 380-387.

P. Theocharis and B. D. Sutter, “A bimodal scheduler for coarse-grained

reconfigurable arrays,” ACM Transactions on Architecture and Code

Optimization (TACO), vol. 13, no. 2, p. 15, 2016.

Z. Kwok and S. J. Wilton, “Register file architecture optimization in

a coarse-grained reconfigurable architecture,” in Field-Programmable

Custom Computing Machines, 2005. FCCM 2005. 13th Annual IEEE

Symposium on. 1EEE, 2005, pp. 35-44.

N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer

Architecture News, vol. 39, no. 2, pp. 1-7, 2011.

M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A cgra

with reconfigurable single-cycle multi-hop interconnect,” in Proceedings

of the 54th Annual Design Automation Conference 2017. ACM, 2017.

(10]
[11]
[12]

[13]

[14]

[15]

[16]

(17]

