
To appear in the 55th Design Automation Conference (DAC), 2018

RAMP: Resource-Aware Mapping for CGRAs
Shail Dave

Arizona State University
shail.dave@asu.edu

Mahesh Balasubramanian
Arizona State University

mbalasu2@asu.edu

Aviral Shrivastava
Arizona State University

aviral.shrivastava@asu.edu

ABSTRACT
Coarse-grained reconfigurable array (CGRA) is a promising solution
that can accelerate even non-parallel loops. Acceleration achieved
through CGRAs critically depends on the goodness of mapping (of
loop operations onto the PEs of CGRA), and in particular, the com-
piler’s ability to route the dependencies among operations. Previous
works have explored several mechanisms to route data dependen-
cies, including, routing through other PEs, registers, memory, and
even re-computation. All these routing options change the graph to
be mapped onto PEs (often by adding new operations), and without
re-scheduling, it may be impossible to map the new graph. How-
ever, existing techniques explore these routing options inside the
Place and Route (P&R) phase of the compilation process, which is
performed after the scheduling step. As a result, they either may
not achieve the mapping or obtain poor results. Our method RAMP,
explicitly and intelligently explores the various routing options,
before the scheduling step, and makes improve the mapping-ability
and mapping quality. Evaluating top performance-critical loops of
MiBench benchmarks over 12 architectural configurations, we find
that RAMP is able to accelerate loops by 23× over sequential execu-
tion, achieving a geomean speedup of 2.13× over state-of-the-art.

CCS CONCEPTS
• Hardware→ Hardware accelerators; • Software and its en-
gineering→ Compilers;
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1 INTRODUCTION
The need for ever increasing power-efficiency targets paved the way
for multicores as well as hardware accelerators. ASIC accelerators
are efficient but suffer from poor usability. Although popular, accel-
eration benefits through GPUs are often limited to parallel loops
and loops with high trip-counts [1]. Field programmable gate arrays
(FPGAs) are reconfigurable and general-purpose but are marred by
low power efficiency due to their fine-grained management [1].

CGRA is an attractive alternative as a programmable, yet power
efficient accelerator, and is quite popular in embedded systems for
streaming and multimedia applications [2–7]. CGRA is simply an
array of processing elements (PEs) interconnected by a 2-D network.
Each PE consists of an ALU-like functional unit and a register file
(RF ). At every cycle, instructions are issued to the PEs. The PE gets
the inputs from the neighbors, itself, and registers and executes
some operation. Then, it writes the result into RF and to the output
register, from which neighboring PEs may read the result in the
next cycle. The PE optionally sends/gets the data to/from the data
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Figure 1: Existing techniques perform poorly and may not
even map the loops on CGRAs with modest resources.
memory. CGRA achieves power-efficient acceleration due to simple
hardware and intelligent software techniques.

A good CGRA compiler should be able to efficiently map all
the loop operations onto a CGRA with its limited resources. Most
existing CGRA compilation techniques first generate the data depen-
dency graph (DDG) of the loop, and then break down the mapping
problem into 2 main parts: i) scheduling, and ii) place and route or
(P&R). In the scheduling step, the DDG is software pipelined, and
a schedule-time is assigned to each operation. This step usually
takes into account the resource constraints, e.g., not schedule more
operations in a cycle than the number of PEs. In the P&R step,
operations are placed onto PEs, and the dependencies are routed.
The goodness of the obtained mapping is critically dependent on
how efficiently the compiler can route the data dependencies. The
best way to route data dependencies is to map the operations to PEs
that are directly connected to each other. However, that may not
be possible due to resource constraints, e.g., operations are already
mapped onto all the PEs that are directly connected. Previous works
have explored various methods to route data dependencies between
PEs, including using other PEs, local or global registers, memory,
and even recomputation [2–4, 8–13].

A major challenge faced by existing schemes is that routing by
these methods changes the DDG (typically in the form of new oper-
ations, and new data dependencies or new scheduling constraints).
For example, routing throughmemory requires an addition of a new
store and a load operation (that must now be mapped to PEs), and
a scheduling constraint (that store must happen before the load).
However, adding new nodes and constraints can make it impossi-
ble to map without re-scheduling. Previous schemes for routing
through PEs like [3, 4, 8], explore the routing options implicitly
inside P&R phase of the compiler, and do not perform re-scheduling.
Previous approaches for routing through registers – in order to
avoid rescheduling – restrict themselves to using only the local
registers in the PE [10], and prior approach for routing through
memory [13] – in order to avoid re-scheduling – decides even be-
fore scheduling that it will spill only variables that have a lifetime
that is greater than certain threshold, even if those dependencies
are actually trivial to map. As a result, previous approaches achieve
poor mapping, and sometimes, they are simply unable to generate
any mapping!
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Figure 2: (a) DDG of a loop with loop-carried dependence (b) a 1×2 CGRA (c) a register aware mapping of a) on b) with II=2 (d)
Target CGRA. A P&R attempt is shown for ad-hoc routing via (e)–(i) PEs (j)–(k) Registers (m)–(n) Memory.

Fig. 1 shows the mapping ability and mapping quality obtained
by the state-of-the-art register-aware (REGIMap[10]) and memory-
aware (MEMMap[13]) techniques across different CGRA config-
urations (Table 1) that vary in the number of PEs, registers, and
memory-bus configurations. It shows that for the top performance-
critical loops from 8MiBench [14] benchmarks, previous techniques
failed to obtain mappings for almost all loops (triangles and squares
in Fig. 1) when highly constrained by the resources. Also, the map-
ping quality obtained (bars in Fig. 1) is far from the best possible
mapping, even when the target CGRA has higher resources.

To ramp-up acceleration achieved through CGRAs, this paper
introduces RAMP – aResource-AwareMapping. Themajor idea be-
hind RAMP is to explicitly model various routing choices. So, RAMP
explores various routing choices systematically with re-scheduling,
without any restrictions (allows for unrestricted use of all the regis-
ters in the CGRA), and adaptively (can decide which dependencies
must be routed throughmemory depending on themapping). RAMP
partitions the mapping problem into 3 steps: i) Systematic explo-
ration of routing strategies ii) (Re)scheduling iii) P&R. When RAMP
fails to P&R a dependency due to resource constraints, it analyzes
reasons for failure and intelligently applies routing alternatives. If
multiple strategies can successfully route the dependency, RAMP
selects the option which utilizes the least resources. Thus, RAMP
maps dependencies efficiently while exploiting resources.

Evaluating top performance-critical loops of MiBench over vari-
ous CGRA configurations, we find that RAMP can map majority of
the loops even onto CGRAs with modest resources. RAMP achieves
the mappings of nearly best possible quality (MII/II = 0.97). RAMP
outperforms state-of-the-art with a geomean speedup of 2.13×.
2 BACKGROUND
To accelerate loops on CGRA, a target application is profiled and
compute-intensive loops are extracted. For each loop, a DDG is
generated [15] after parsing the intermediate representation [16].
DDG is a directed graph D=(V,E); nodes V represent the operations
to be executed by PEs and edges E represent data dependencies
among the operations. An iterative modulo schedule [17] is gen-
erated for DDG and operations are mapped on PEs in a software
pipelined manner. For example, a mapping of DDG of Fig. 2(a) on
a 1×2 CGRA of Fig. 2(b) is shown in Fig. 2(c). Nodes a and b of
ith iteration are mapped to PE1 at time t and t + 1. c and d are
mapped to PE2 at t + 1 and t + 2, honoring the data dependencies.
A loop-carried dependence is indicated through an arc b → a, with
weight of 2. Hence, node a of ith iteration (ai ) needs data from

DDG, 
Arch Description, 

Target II Mapping
Scheduling

(IMS) Routing in an
ad-hoc manner

Place & Route

Figure 3: Previous approaches implement the routing strate-
gies inside the P&R step, and do not re-schedule the graph.

previously executed node bi−2, which it obtains from the registers.
In an iterative modulo schedule, the constant interval between the
start of successive iterations is referred as Initiation Interval (II) [17],
which is the performance metric. In this example, the operation ‘a’
can execute after every 2 cycles and hence, II obtained is 2 cycles.
Moreover, it takes at least 2 cycles to map a total of 4 operations
onto 2 PEs. Therefore, obtained II is Minimum II (MII) [17].
3 LIMITATIONS OF EXISTING HEURISTICS
One of the challenging and unique aspects of a CGRA compiler
is the problem of routing the data dependencies among the PEs.
If all dependent operations can be placed on PEs that are directly
connected to each other, then the application mapping problem
would be trivial. However, due to resource constraints, this may not
be possible. Previous works have explored many different ways of
routing the data dependencies, including other PEs [2, 3, 8], register
files [2, 9, 10, 12], memory [13], and even recomputation [8]!

Works like [2], formulate one problem for the whole mapping
(scheduling, placement, and routing), and attempt to solve it in one
shot. However, this makes the problem very complex, and they
solve it by simulated annealing based approaches, that not only
take a long time, but also generate the poor mapping, and offer
no insights. EMS [3] and EPIMap [8] developed schemes to route
dependencies via PEs. To do so, they modify DDG by inserting the
routing operations, which can be mapped on spare PEs. Fig. 2(e)
shows a dependency graph that cannot be mapped on a 1×2 CGRA
because it is not possible to route the data dependency a → e , as PEs
on which they are mapped are not directly connected. This problem
can be solved by adding an additional node ar , which transforms
the DDG into the one shown in Fig. 2(f), and now it can be mapped
as shown in Fig. 2(g). Now, if we try routing for the edge a → e
in Fig. 2(h) by adding an additional routing node ar , it cannot be
routed (without rescheduling) because of resource constraints (no
more PEs are available at time t + 1). The problem is that previous
approaches implement this routing implicitly inside the P&R stage
of the compilation (see figure 3), and do not perform re-scheduling
and therefore are unable to generate the good mapping.

GraphMinor [9] and REGIMap [10] allow routing dependencies
via registers. They allow using local rotating registers of the PEs

2
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Figure 4: A High-Level Overview of RAMP.

to map the recurring values. As a result, both the predecessor and
the successor of the dependency must be placed on same PE, so
that they can access the same RF. If there are not enough rotating
registers in one PE, then the dependency cannot be routed even if,
there are more rotating registers in RFs of rest of the PEs. Fig. 2(k)
shows a P&R attempt to map DDG of Fig. 2(j) onto 1×2 CGRA.
Routing loop-carried dependence e → a via RF requires 2 registers.
Even though CGRA has total 2 registers, a single RF does not have
sufficient registers. So, the dependence cannot be routed via reg-
isters. However, it is possible to map this DDG using the register
of other PE, as shown in Fig. 2(l). In this valid mapping, ei writes
output to the register of PE1 (in cycle t+4), and then it is transferred
to PE2 (in cycle t + 2 and t + 3, for previous iteration ei−1), and
eventually (in cycle t + 5), it is used by operation a. As seen in this
example, a generalized approach to routing via distributed registers
requires changing the DDG (adding new nodes er r , and erw ), and
re-scheduling. This is hard to do in previous approaches since they
implement routing implicitly in P&R phase of the compiler, and
avoid the need to re-schedule the DDG by restricting their solution.

MEMMap [13] allows routing dependencies via memory. How-
ever, at the scheduling stage, they pre-decide on the dependencies
that will be routed through memory. They route the dependencies
with length (difference in schedule times) greater than or equal to 3
via memory. For DDG of Fig. 2(m), since dependencies a → д and
b → a have the length more than 3, they are slated to be routed
through memory. MEMMap replaces them with additional store
and load operations (Sa , Sb and La , Lb in Fig. 2(n)), and then runs
the P&R on it. However, adding these nodes without re-scheduling
can make the graph un-mappable (Fig. 2(n)). Furthermore, the deci-
sion of routing the dependencies with the longest length through
memory may not be right. For example, if there are enough regis-
ters or PEs to route, then it may be better to route the dependency
through registers or PEs (requires adding fewer nodes to the DDG).
In particular, in this example, the dependencies a → д and b → a
can be easily routed via registers. In this sense, MEMMap has a
rigid strategy to route via memory and does not adapt to the needs
of the application. This is because they implement their routing
scheme implictly in the P&R stage, and avoid re-scheduling.

4 RAMP: RESOURCE-AWARE MAPPING
The key to systematically and intelligently exploring various rout-
ing choices is to explore them in an explicit manner. As opposed
to previous approaches (see Fig. 3), RAMP partitions the mapping
problem in 3 sub-problems (see Fig. 4): i) Systematic Exploration
of Routing Strategies ii) Re-Scheduling iii) P&R. Fig. 4 reveals
the high-level overview of RAMP. To explore all the resources flex-
ibly, RAMP models the various routing strategies such as routing
via PEs/registers, spilling data to memory, spilling to distributed
RFs, re-computation etc., which are selectively applied during map-
ping attempt at an II. For each strategy, RAMP modifies the DDG
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Figure 5: Graph Modification and Re-Scheduling.
accordingly to route the target dependency. The modified DDG
is modulo scheduled (with additional scheduling constraints for
some of the routing strategies), which takes care of the potential
resource constraints. After scheduling the modified graph, RAMP
tries to find the mapping for adopted routing strategy. After trying
several routing options, if multiple strategies successfully map the
operation/dependency at an II, RAMP selects the one which re-
quires the least resources. Such approach enables RAMP to route a
dependency in the best possible manner while exploiting resources.
Then, with the corresponding modified (and rescheduled) graph,
RAMP moves forward to P&R remaining unmapped operations and
dependencies. Thus, RAMP can adapt to the loop characteristics,
accommodating the routing requirements of the DDG of any loop.

As RAMP models routing phase explicitly and re-schedules the
modified graph, it can flexibly explore new routing solutions. For ex-
ample, RAMP employs the novel approach of spilling to distributed
RFs and enables the spilling to memory. Moreover, RAMP benefits
from different CGRA resources (e.g. different memory bus band-
width [10, 13], diverse RFs i.e. various rotating and nonrotating RFs
[2, 12, 18] and RFs of local/shared/centralized structure [9], hetero-
geneous PEs [3, 19, 20] etc.) and succeeds in achieving mappings
of better quality even when modest resources are available.

4.1 Routing Options
Fig. 5 shows that for each routing strategy, how a DDG is modified
and re-scheduled (sometimes, with additional scheduling criteria).
a. Routing data via PEs: If the dependent operations are sched-
uled at a distance of d cycles, DDG is modified by inserting d − 1
routing nodes to route the dependency via PEs. Each of these rout-
ing operations can be then placed on spare PEs to satisfy the de-
pendency. In example of Fig. 5(a), operations x and y are scheduled
d = 3 cycles far. So first, dependence x → y is routed by inserting 1
routing operation r1. Then, the graph is re-scheduled with IMS and
a P&R attempt checks whether the dependency can be routed by
PEs. In the next iteration, 2nd routing operation r2 is added and the
dependency can be successfully routed. In total, up to d-1 routing
operations are added iteratively to route the dependency.
b. Spilling to distributed RFs is a novel solution to efficiently
route a dependency in the presence of distributed RFs. In the exam-
ple of Fig. 2(k), routing the dependence e → a required 2 registers
and was not routed because the distributed RF had 1 register. But,
RAMP finds that the total CGRA registers are 2, which can ac-
commodate the requirement. To benefit from such availability of
distributed registers, RAMP splits the register requirement. From
previous mapping attempt, it determines the maximum number

3
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of free registers (here 1, R1) inside an RF. Then, the graph is mod-
ified by inserting a RF-read operation (er r ), as shown in Fig. 2(l).
Operation er r reads the value of the needed data ei−1 and must be
scheduled before the register(s) is over-written with a new value of
variable ei (i.e. between time t and t+3, for II=5). If successor(s) ai+1
is scheduled at a distance from er r then, RAMP inserts a RF-write
operation (ewr ) which stores the value in free registers of some
other distributed RF (e.g. in R1 of PE2). RF-write operation ewr
should be immediately scheduled after an RF-read operation er r .
During insertion of these operations, the compiler should ensure to
update corresponding dependencies. For example, the distant suc-
cessor ai+1 now obtains the needed variable ei−1 from ewr through
the RF. Plus, during placement, the spilling operations er r and ewr
should be mapped onto those PEs which do not share the RF.
Fig. 5(b) reflects the corresponding graph modifications and sched-
uling criteria, when generalized for some data dependency x → y;
operations x and y are scheduled at time t and t ′.
c. Spilling Data to Memory modifies the dependence x → y
by inserting a store and a load operation Sx and Lx , as shown in
Fig. 5(c). ∀ (x ,y), ∃ (Sx ,Lx ) such that x → Sx and Lx → y. After
modification, entire graph is modulo scheduled with additional
constraint: load operation (Lx ) must be scheduled after a store (Sx ).
d. Loading a read-only variable from memory requires to in-
sert a load operation as a predecessor, as shown in Fig. 5(d). When
a live-in value ‘c’ cannot be accommodated in the nonrotating
registers, it is loaded from the memory through an operation ‘Lc ’.
e. Re-computation allows to compute the predecessor operation
again as a different node [8, 9]. For example, to route the dependency
x → y, graph in Fig. 5(e) is modified by inserting a new node x ′
which performs the same operation as the predecessor node x . Input
edge(s) to x from p is also copied. Successor y now obtains value
from the re-computed node x ′. Re-computation is highly beneficial
when the PE corresponding to x is connected to the PE on which z
is mapped but, it is not connected to the PE on which y is mapped.
During the graph modification for a strategy, the path sharing [9]
is also ensured so that all common successors of the predecessor
operation can benefit from the selected routing strategy.

4.2 Failure Analysis
After a P&R attempt, several dependencies may not be mapped due
to the resource constraints and RAMP should selectively apply some
routing strategies, to map these dependencies. RAMP iterates on
each of these unmapped dependencies/operations, and determines
the potential challenge in mapping it. Based on the schedule timing
of the predecessor and successor, as well as their compatibility in
the obtained mapping, RAMP diagnoses 1 out of 3 P&R challenges:
i) Dependent operations are scheduled at the distant tim-
ings; routing the dependency via single RF is not possible.
In such scenario, RAMP applies routing strategies such as routing
via PEs, spilling the data to distributed RFs and spilling the data to
the memory. In fact, with enough spare PEs, routing via PEs would
successfully route the dependency. Similarly, spilling data to the
distributed RFs will help to achieve the mapping if RFs in CGRA has
enough free registers to accommodate the routing requirement of
the data dependency. Otherwise, the dependency would be success-
fully routed via memory. It is possible that all of these strategies

would successfully route the data dependency; the routing strategy
utilizing the least resources (to map the DDG) is finally selected.
ii) Predecessor operation is a live-in/read-only value Such
routing failure is possible because, either the CGRA does not have a
nonrotating RF or variables of the loop accesses more live-in/read-
only values than total nonrotating registers available. In either case,
the read-only data should be loaded from the data memory.
iii) Dependent operations are scheduled at the consequent
timing; the dependency cannot be routed because of the lim-
ited interconnect and/or less free PEs. Out-degree problem [8]
is one such example of the interconnect restrictions; a node has
more successors scheduled at the consequent cycle, as compared to
number of PEs that are interconnected with a single PE. To P&R
such operation/dependency, RAMP either re-computes the prede-
cessor operation or, routes data via a PE, or re-schedules operations.

Algorithm 1 shows how RAMP analyzes the failures and selec-
tively applies different resource exploration strategies, to route
the dependencies (lines 8–23). If a strategy successfully routes the
unmapped dependency at a given II, it is considered as a valid op-
tion. If no option is valid then it implies that no routing strategies
can map the dependency due to resource constraints. So, RAMP
increments II by 1 and tries again with the original DDG. Often
multiple strategies can be successful to route the dependency. Then,
RAMP selects the strategy that maps maximum operations while
utilizing least resources (PEs and registers). Then, it keeps the cor-
responding modified (and rescheduled) graph and proceeds further
to map remaining unmapped dependencies, at an II. As a result,
RAMP produces a mapping where different data dependencies are
efficiently routed through a combination of the various strategies.

Algorithm 1: RAMP (Input DDG D, CGRA Architecture CA)
1 D← check_Support_Nonrotatinд_RF (D,CA), D’← D;
2 MII← calculateMII(D ′,CA), II←MII;
3 while mapping_attempt < threshold do
4 DS ← schedule(D ′,CA), RI I ← getResourceGraph(C, I I );
5 CG← Compat_Graph(DS ,RI I ), C← findMaxClique(CG);
6 if |VC | = |VDs | then return C ;
7 while some node n is not mapped do
8 if (check_failure_dueTo_largeSchedDist(n, I I ,DS ))

then
9 validr , I Ir ,Utilr ,Dr ,Cr ← routeViaPEs(n);

10 validm , I Im ,Utilm ,Dm ,Cm ← spillToMemory(n);
11 validr f , I Ir f ,Utilr f ,Dr f ,Cr f ← spillToRFs(n);
12 else if (isReadOnly(дet_pred(n))) then
13 validro , I Iro ,Utilro ,Dro ,Cro ← load_ReadOnly();
14 else
15 validr ec , I Ir ec ,Utilr ec ,Dr ec ,Cr ec ← reComp(n);
16 validr , I Ir ,Utilr ,Dr ,Cr ← routeViaPEs(n);
17 validr e , I Ir e ,Utilr e ,Dr e ,Cr e ← reSchedTime(n);
18 foreach valid option validi do
19 Dbest , Cbest ← best_option(I Ii ,Utili ,Di ,Ci );
20 if (no valid option is found) then break;
21 else
22 D’← Dbest , C’← Cbest ;
23 if total_left_nodes == 0 then return C’;
24 II← II + 1;
25 return failure;

4
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Figure 6: (a) With exhaustive resource exploration, RAMP
generates code for majority of loops when compiled for
CGRAs with modest resources (b) RAMP enables CGRA to
accelerate loops by 23× over sequential execution.

5 EXPERIMENTAL SETUP
Benchmarks: We profiled MiBench benchmark suite [14] and de-
termined the top-most non-vectorizable performance-critical loops
for the compute-intensive applications. These benchmarks repre-
sent important workloads in the fields of security, telecom, auto-
motive etc. and can benefit from acceleration through CGRAs.
Compilation: We implemented RAMP as a set of passes using
CCF [15] – CGRA Compilation Framework (LLVM 4.0 [16] based);
various routing strategies were explicitly modeled. We used opti-
mization level 3 and also targeted complex loops consisting accesses
to sub-words/pointers. The loops with conditionals were mapped
using partial predication [21]. We did not target the loop consisting
system calls as it cannot be accelerated by CGRA.
Simulation: Techniques were evaluated on the popular cycle-
accurate simulator gem5 [22] in system emulation mode; we mod-
eled CGRA as a separate core coupled to an ARM Cortex-like pro-
cessor with ARMv7a profile. In our setup, PEs are connected in
2D torus, performing fixed-point operations with 1-cycle latency
[4, 10, 13]. The memory bus is shared among PEs in a row unless
specified otherwise. For a load/store operation, 2 instructions are ex-
ecuted; one generates address and second loads/stores data. CGRA
accesses data and instruction memories of 4 kB.
Techniques Evaluated: We evaluated RAMP against state-of-the-
art register-aware technique REGIMap [10] and recent memory-
inclined technique MEMMap [13]. All evaluations were over a wide
range of CGRA architectures (Table 1).

Table 1: Specifications of CGRA architecture configurations

Config.
# Size RF Reg.

in RF
Memory

Units (PEs)
Sharing of

Memory Bus
1 2x2 Centralized 16 3, 4 dedicated
2 2x2 Centralized 16

Homo-
geneous
PEs
(All)

shared
among
PEs of
a row

3 2x2 Local 2
4 2x2 Local 4
5 4x4 Centralized 64
6 4x4 Local 2
7 4x4 Local 4
8 4x4 Local 4 2,4,6,8 dedicated
9 8x8 Centralized 128 Homo-

geneous
PEs

shared
among PEs
of a row

10 8x8 Local 4
11 8x8 Local 8
12 8x8 Local 8 1,3,5,7,9,11,

13,15,19,21 dedicated

6 RESULTS AND ANALYSIS
6.1 With holistic approach RAMP can generate

valid mappings even with limited resources
Fig. 6(a) shows a total number of performance-critical loops mapped
by each technique, for each CGRA architecture configuration. With
limited architectural resources, both MEMMap and REGIMap were
not able to generate the code for most of the loops. Hence, these
loops had to be executed on the CPU, losing acceleration benefits.
For smaller CGRAs, II is often resource-bounded with a higher
value; some intra-iteration dependence can be easily routed just
through few registers. However, MEMMap routed them through
memory by inserting additional load/store nodes. It was not possi-
ble for MEMMap to place and route excessive nodes – especially
memory operations – due to the limited number of PEs and limited
bandwidth. In absence of a re-scheduling scheme, MEMMap failed
to place and route all operations, even at higher II. For example,
bitcount contains 13 operations to be mapped on a 2×2 CGRA, with
4 loop-carried dependencies with weight 1. After scheduling DDG,
MEMMap opted to route them through memory i.e. with additional
4 loads and 4 stores. This not only increased total operations by 62%
but, required 6 operations to be scheduled and mapped on 4 PEs at
the same time. Due to lack of an efficient re-schedule mechanism,
MEMMap failed to map these operations, even at unbounded II.

On the other hand, REGIMap failed to map operations when lim-
ited number of registers was available. For example, performance-
critical loop of дsm contains 200+ operations and 20+ intra/inter-
dependencies. REGIMap was not able to spill the data to memory
when registers were insufficient. So, it had to route the values
through PEs, once registers were already utilized. The small num-
ber of total PEs made it impossible to route all such dependencies.
In contrast, RAMP flexibly explored various routing alternatives to
map such unmapped nodes/dependencies (by spilling to memory
or to other distributed RFs). So, RAMP was able to map – and accel-
erate – the majority of the loops with modest CGRA resources. In
fact, with the least resources (Config. 1), RAMP achieved a geomean
MII/I I of 0.75 and accelerated loops by 4×.

6.2 RAMP Scales Well with Resources
Fig. 6(b) compares the performance of techniques over a sequen-
tial execution on the processor core. For total 8 (benchmarks) ×
12 (configurations) × 3 (techniques) evaluations, we determined
performance in terms of execution cycles and computed speedup
of a technique over a sequential execution. Then, we report a ge-
omean of speedup for all the benchmarks. For CGRAs of a particular
size, both REGIMap and MEMMap did not benefit much from the
variation of resources and their definitions restricted mappings ben-
efiting from available heterogeneous/custom architecture features
such as global RF, nonrotating registers (to manage live values),
sharing of the memory bus (bandwidth) etc.

In contrast, RAMP’s comprehensive problem formulation ex-
ploited the architectural resources available, outperforming these
techniques. For example, for configurations 7–12, RAMP achieved II
closer to MII (MII/II = 0.90–0.97). With the higher resources, RAMP
accelerated loops by 23× as compared to the sequential execution.
Most of the loops are resource-bounded where RAMP’s exhaustive
exploration of routing strategies allowed it to consistently perform
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Figure 7: Performance of techniqueswhen loops aremapped
to a 4×4 CGRA with 4 local registers (configuration 7).

better. The only exception is the benchmarks where MII of a loop is
recurrence-bounded (Fig. 7). For example, a critical path of adpcm
decoder consists of 22 operations with a loop-carried dependence
of weight 1. So, all the three techniques were able to easily achieve
a mapping at higher II. Overall, RAMP achieved 2.13× better perfor-
mance than REGIMap and 3.39× than MEMMap, over 12 different
target architectures.
6.3 Spilling to Memory and to Distributed RFs

is Very Effective
Detailed analysis of the mappings obtained by RAMP reveals that
new strategies of spilling data to distributed RFs or to memory are
quite effective. When there were fewer registers (e.g. configurations
1-4), RAMP accessed some live values from memory or spilled to
memory some dependencies with large distance. In fact, RAMP
spilled data to the memory only after exploiting the available regis-
ters (just like how a regular compiler spills!). This ensured relatively
less (memory) operations and least routing while utilizing available
registers. For example, with limited resources, spilling to memory
successfully mapped some operations for jpeд and дsm. Similarly,
when the RFs were distributed, RAMP benefited from the novel
solution of spilling values to other RFs, finding better mappings for
the loops of susan, adpcm etc. We also observed that present-day
compilation strategy of implicitly routing the dependencies in an
ad-hoc manner does not work well. Instead, letting the compiler
to re-schedule the graph and systematically determine an efficient
way of mapping the dependency resulted in better performance.

Moreover, we implemented RTL for CGRA, mapping it to Syn-
opsys 32nm process and synthesized it with Cadence RTL compiler.
With obtained critical path delay (D) and power (P ), we computed
energy E as P×C×D [7], if execution cycles achieved for a critical
loop is C . With a substantial reduction in execution time, RAMP
significantly reduced energy consumption. For example, for a 4×4
CGRAwith 4 local registers, RAMP reduced energy consumption by
48% as compared to MEMMap and by 34% as compared to REGIMap.
6.4 Computational Complexity
After scheduling n nodes at some II, RAMP constructs operation-PE
product graph of sizemn; CGRA consists ofm PEs. Then, RAMP
constructs a compatibility graph [10] of size N = (mn)2, determin-
ing whether an operation-PE pair can co-exist with other pairs in
the search space. To P&R n nodes, RAMP checks for a clique of size
n in the compatibility graph of size N . Our clique search is based
on the algorithm of [23], which searches for a clique in polynomial
time in at most N 8 steps. Therefore, just like other clique-based
mapping heuristics REGIMap and MEMMap, the computational
complexity of RAMP is O(N 8).

However, computation time of RAMP is comparable to REGIMap
and MEMMap (in order of seconds), if not always better. Essentially,

this stems from higher mapping quality (fewer iterations due to 2×
better I I ) and far less nodes to be mapped (i.e., smaller n) in any
of the attempts. For example, both REGIMap and MEMMap load
the live-in data from the memory [10, 13, 18]. Plus, REGIMap can-
not spill the data and requires many routing operations, when
constrained by the availability of few local registers. Similarly,
MEMMap often routes data via memory, even if enough registers
are available. Thus, they have to map 1.5×-2× nodes than RAMP.
7 SUMMARY
This paper presents challenges with existing mapping techniques,
which are unable to make good use of the routing resources. They
first schedule the DDG and then attempt the P&R; routing is inter-
nal to P&R and is carried out in an ad-hoc manner. As a result, the
operations may not be mapped due to resource constraints. This
paper introduces RAMP which models various routing strategies
explicitly and flexibly explore various ways to map the data depen-
dencies while exploiting the CGRA resources. RAMP accelerates the
top performance-critical loops of MiBench by 23× over a sequential
execution and by 2.13× over state-of-the-art techniques.
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