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ABSTRACT

Coarse-grained Reconfigurable Arrays (CGRAs) are promising accelerators capable

of accelerating even non-parallel loops and loops with low trip-counts. One challenge

in compiling for CGRAs is to manage both recurring and nonrecurring variables in

the register file (RF) of the CGRA. Although prior works have managed recurring

variables via rotating RF, they access the nonrecurring variables through either a

global RF or from a constant memory. The former does not scale well, and the latter

degrades the mapping quality. This work proposes a hardware-software codesign

approach in order to manage all the variables in a local nonrotating RF. Hardware

provides modulo addition based indexing mechanism to enable correct addressing

of recurring variables in a nonrotating RF. The compiler determines the number of

registers required for each recurring variable and configures the boundary between the

registers used for recurring and nonrecurring variables. The compiler also pre-loads

the read-only variables and constants into the local registers in the prologue of the

schedule. Synthesis and place-and-route results of the previous and the proposed RF

design show that proposed solution achieves 17% better cycle time. Experiments of

mapping several important and performance-critical loops collected from MiBench

show proposed approach improves performance (through better mapping) by 18%,

compared to using constant memory.
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Chapter 1

INTRODUCTION

Need for faster and power-efficient processors has paved the way for multicore

and many-core processors along with considerable research in accelerators. Accelera-

tors are special purpose computational units designed to accelerate compute-intensive

parts of an application. They can achieve speedup and power-efficiency more than

that by multicores alone [1, 2]. Of course, customized accelerators implemented as

Application Specific Integrated Circuits (ASICs) can achieve the best power and per-

formance but suffer from poor usability [3]. Field programmable gate arrays (or FP-

GAs) are reconfigurable and general-purpose but are marred by low power efficiency

due to fine-grain management; plus, they are hard to program. [1, 4, 5]. Graph-

ics processing units (GPUs) have made it to the general purpose processor market,

accelerating a broad range of parallel applications. Although programmable, their

acceleration is limited to parallel loops and loops with higher trip counts [1, 6, 7, 8].

While executing loops with conditionals, GPUs also suffer from extreme performance

loss (This well-known problem is referred to as the branch-divergence problem[9]).

Hence, although GPUs may provide high acceleration on few kernels [10, 11], many

performance-critical loops left unaccelerated, achieving less acceleration at an appli-

cation level, as per Amdahl’s law [12].

Coarse-Grained Reconfigurable Arrays (CGRAs) are an attractive alternative as

programmable, yet power efficient accelerators [1], that can accelerate even non-

parallel and low trip-count loops. A CGRA is simply an array of processing elements

(PEs) interconnected by a 2-D network, as shown in Figure 1.1. Each PE consists

of an ALU-like computational unit and a register file (RF). Functional units can
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Figure 1.1: A 4× 4 CGRA with PEs Connected in a 2-D Mesh. A PE Consists of
an ALU and a Register File.

perform arithmetic, logical and comparison operations. At every cycle, contexts are

issued from the configuration memory to the PEs, specifying their tasks. Usually,

data/address bus are shared either by PEs in the same column or by PEs in the same

row. CGRA achieves higher power efficiency due to simpler hardware and intelligent

software techniques. CGRAs can achieve power efficiencies of several GOPs per watt

[13, 14] and are demonstrated to be power-efficient than even SIMDs [5] for imaging

applications. Owing to their power-efficiency, CGRAs are very popular in accelerating

applications from multimedia and embedded system domain [15, 16, 17, 18, 19].

One of the key challenges in the efficient use of CGRAs is about managing loop

variables using the CGRA registers. There are two kinds of variables in loops: the

recurring variables (repeatedly written and read), and the nonrecurring variables

(read-only and constants). Previous techniques manage recurring variables in rotating

register files [20]. Rotating RF is a specialized hardware which resolves the issue

of cross-iteration register overwriting by either rotation of the data through shift

registers or by accessing different physical register at each iteration [21]. In addition,

the nonrecurring variables are stored and accessed from either from constant memory

2



[22] or via a global RF [23, 24]. Accessing global/central register file (which may be far

from PEs) results in higher cycle time, and accessing constant memory can increase

the number of loads, and in turn degrade the performance. [25] manage short and

long-lived data through special hardware solutions (shift registers, retiming chain

etc.), which can be complex and costly. Although prior works explored different

RF architectures [13, 26], they lack in demonstrating the their scalability and in

describing the software management of the RF solutions. It is also unclear that

how such solutions can be integrated with any register-aware compiler techniques for

CGRAs.

This work proposes a hardware-software approach to manage both read-only and

recurring values in a non-rotating local (inside the PE) RF. The hardware has a

modulo indexing mechanism to the access the RF. The final register index can be

computed by adding the register number and the stage count, to access right register

for recurring values. Read-only operands are preloaded into local registers before

the loop execution. In the software, the compiler reserves necessary registers in the

local RF. In addition to this, the compiler provides a configuration to determine the

number of registers inside rotating and non-rotating sections of RF. After synthesis

and place-and-route of the previous and the proposed RF architectures, results show

that proposed RF design achieves 17% better cycle time. Mapping results of various

important and compute-intensive loops collected from MiBench show that proposed

approach improves performance by 18%, compared to using constant memory.

3



Chapter 2

BACKGROUND

2.1 Mapping of Loops on CGRAs

Compute-intensive loops are extracted from the target application, and each loop

is converted to a data flow graph (DFG) as shown in Figure 2.1(a). DFG is a directed

graph D=(V,E) where V and E are vertices and edges respectively. Vertices or nodes

represent the operations to be executed by PEs and edges represent data dependencies

between the operations. A 2×2 CGRA is shown in Figure 2.1(b). A valid mapping

of the given DFG (a) on the CGRA (b) is shown in Figure 2.1(c). This mapping

can be generated based on the iterative modulo scheduling [20]. The CGRA compiler

explicitly performs software pipelining, mapping consecutive iterations of the loop

simultaneously on the PE array.

d

a

c

b a
b

c

d
a

b

Time

1

2

3

II  =  2

(a)

(b) (c)

Figure 2.1: (A) DFG of a Simple Loop, (B) a 2× 2 CGRA, (C) a Valid Mapping of
(A) on (B) with II = 2
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As shown in Figure 2.1(c), firstly nodes a and b are mapped to PE1 and PE3 at

time 1, considering consumer node c. Then, nodes c and d are mapped on PE4 at time

2 and 3, respectively, forming the first iteration of execution. Darker nodes represent

the second iteration of the loop, which can start before the completion of the first

iteration due to software pipelining. In the iterative modulo schedule, the earliest

time at which next iteration can start is called Initiation Interval (II) [20], which is

an important performance metric. Here, II is 2. There are various techniques to

obtain valid mapping for CGRAs [14, 24, 27, 28]. CGRA architecture description

should be known a priori to the mapping algorithm to achieve better valid mapping.

2.2 How to Use Registers?

Registers of the CGRA are used to store short-term and long-term values, required

by PEs during the loop execution [29]. Since software pipelined schedule is generated,

the liveness of the same variable may overlap [27]. Additionally, in accelerating loops

with loop-carried dependency, the data values are required across iterations. To

address this issue, rotating RF is used to store the values for multiple iterations and

nodes can use them, whenever needed. They can be implemented either by rotating

the data of the registers through shift registers at every II cycles [25] or by accessing

different physical registers through same virtual register index [21, 27]. The latter

is implemented through modulo addition of the fixed register index value and stage

counter, which increments at every II cycles. Hence, it results in the different physical

register index at every II cycles, preserving recurring values.

Figure 2.2(a) represents a DFG of a loop to be mapped on 1×2 CGRA shown

in Figure 2.2(b), and Figure 2.2(c) represents a valid mapping with II = 3. Each

PE has dedicated registers. Here, L computes load address for a[i] with base address

l = &a[0]. There is an arc from d to b, with weight 2, indicating the recurrency.

5



Hence, node b at ith iteration requires the value of d from (i− 2)th iteration. Every

value of d for at most two iterations should be stored into two different registers to

provide values during later iterations. So, we need value of d from different iterations

to be managed in different registers. We can see that at time t + 1, d(i−1) writes

its value into register 0 of PE 2. Register 1 of PE 2 contains value of previously

computed d(i−2); which can be used by bi at time t+2. Similarly, at time t+4, di can

write resultant value into register 1 of PE 2; preserving value of d(i−1) into register 0

which is needed by b(i+1) at time t + 5. Hence, recurring values are stored into the

rotating RF [24, 27]; different physical registers are accessed at every II cycles with

a fixed virtual register index.

Time

t

t+1

t+2

t+3

t+4

L

a

b

c

d

L

a

c
i i-­1

i

i

i

i

i+1

i+1

d i-­2

d

d

(b) (c)

II  =  3

i-­1

i-­1

d i-­1

(a)

a

b

2

L

c

d

d i-­2d
i-­1

d i

d i-­3

d i-­2

d i-­2

l

l

l

l

l d i-­1

Figure 2.2: (A) DFG of a Loop with Recurrency, (B) a 1×2 CGRA, (C) a Valid
Register Aware Mapping of (B) on (C) with II = 3
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Additionally, PEs need to access nonrecurring variables like read-only operands,

live-in data vital for the loop execution, etc. If they are managed in rotating RF, it

can cause the registers to be overwritten, resulting in incorrect output. For example,

L computes &a[i] which needs nonrecurring variable l = &a[0]. l is stored into register

0 of PE 1 and should be available throughout the loop execution. Similarly, some

nodes may need constant operands, which can not be supplied as immediate bits due

to instruction set architecture (ISA) constraints. Since nonrecurring variables should

be accessed from the same register index every time, they should be managed in the

nonrotating registers. Nonrecurring variables can be part of on-chip memory (L1

cache or a memory bank in scratch-pad memory) [22], as shown in Figure 3.1(a) and

can be loaded during the loop execution. Alternatively, they can be stored in a global

RF, which is accessible to all PEs [23, 24], as shown in Figure 3.1(b). But, having

both rotating and nonrotating RF is inevitable.

7



Chapter 3

LIMITATIONS OF PRIOR APPROACHES

Register file architectures can be broadly classified as 1) Global RF 2) Local RF

and 3) Shared RF [27, 28]. As the name suggests, global RF is a centralized RF,

accessed by all PEs as shown in Figure 3.1(b). Local RFs are RFs dedicated to each

PE of the CGRA, as shown in Fig 3.1(c). Shared RFs allow data sharing between

neighboring PEs. Depending on the design choice, various PEs can access these

structures, introducing heterogeneity. [13, 27].

Mostly, these register files are used to keep the recurring data, generated and

needed throughout the loop execution. Consequently, these RFs can be rotating

RFs, used for accessing recurring variables. So, one way to access constants can

be loading the values from on-chip memory (also referred to as constant memory).

Accessing constant memory [22] is simple, but it results in extra load operations,

which can degrade the performance. In fact adding more loads can be much more

harmful because of 2 main reasons: i) in most CGRAs, only a few of the PEs can

perform the memory operations [24], ii) Often the load/store bandwidth in CGRAs

is limited, e.g., data and address buses are typically usually shared by PEs in a row

or by PEs in a column [30].

Past works like [23, 24] have considered this issue of pressure on the memory.

They manage rotating data into local RF and reserve the nonrotating registers into a

global RF, to manage live-in (needed for the loop execution) or live-out (to be stored

back at the end) values, as shown in Figure 3.1(b). Such global RF is then a non-

rotating or regular RF. Managing variables through global RF allows data sharing

between PEs without external routing. Although this may save from redundant

8



(a) (b) (c)

Figure 3.1: (A) CGRA with On-chip Constant Memory. (B) CGRA with Global
RF Where Each PE Is Connected to Global RF Through Column-wise Bus Structure.
(C) CGRA with Local RF.

register reservations to store single value for different PEs, the global RF design does

not scale well. Experiments have shown the need for connecting all the PEs to the

global RF [29]. But, increasing read and write ports for more PEs to access global

RF can result in performance degradation and increase in total area [29]. Further,

the addition of a global RF size burdens ISA, as the number of bits representing read

and write registers increases. For example, each PE would require 18 bits to access

a 64 register global RF, as both inputs can be from the registers and a PE can write

to global RF. Increasing ISA width results in increased memory bus width, increase

in context size and in-turn, increase in area and power.

Bouwens et al. [13] proposed a shared RF solution, which is better for data

sharing within the neighbors and may scale well, but no application mapping and

register allocation scheme has been proposed. Similarly, [26] explored different RF

solutions targeting combinations of both rotating and non-rotating RFs. However,

how such solutions can reserve and allocate registers for a given kernel, their soft-

ware management and their integration with a compiler technique, is not proposed.

Besides, scalability and the effectiveness of the solutions compared to prior variable

management schemes is not demonstrated.
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Local RFs are usually smaller and accessing the data through them can provide

scalability achieving better performance. Dedicated or local RFs are considered as a

better alternative, and it helps to obtain better performance [23, 27]. So, this work

focuses on managing both recurring and nonrecurring variables locally within PEs.

We can have separate rotating and nonrotating RFs locally, as demonstrated in [25,

26]. But, utilizing registers effectively becomes a challenge. Also, additional complex

hardware structures can consume more area and power. It makes design decisions

more challenging, and naive architectural choice can deteriorate the performance.

This work proposes to use a local unified non-rotating RF, in which both recurring

and nonrecurring variables are managed. The proposed hardware-software approach

is scalable and does not burden the ISA. The compiler has to configure the boundary

between the registers used for recurring and nonrecurring variables, do necessary

register allocations, and preload the constants and read-only variables.

10



Chapter 4

PROPOSED APPROACH: UNIFIED RF

To make the cut for the demand of efficient management of both recurring and

nonrecurring variables locally in a single RF, this work presents local unified RF as

a scalable solution. The complexity lies in the hybrid hardware-software approach

where the hardware is kept simple, though configurable, with a regular (nonrotating)

RF; rotation is implemented through modulo addition with register index [26, 27].

Nonrecurring variables can be preloaded into registers inside nonrotating section and

are available throughout the execution. The compiler reserves appropriate registers

for RF of fixed size; during mapping, one problem is in the efficient utilization of

registers to manage all variables in RF of fixed size. The proposed approach can

be integrated with any mapping technique for CGRAs as shown later in section 4.4.

Through this solution, it is shown that how compiler takes on the challenge by map-

ping operations based on the available registers. It enforces efficient register utilization

for numerous loops by providing a configuration to decide the number of registers in

rotating and nonrotating part of the unified RF.

4.1 Accessing Registers in Unified RF

Designing unified RF with simpler hardware jettisons the use of specialized com-

ponents including shift registers. So, a regular RF is used and a modulo addition of

the register index and stage counter is performed in order to implement the rotation.

The stage counter is incremented at the end of every II cycle and given a read/write

operation, virtual register index remains constant. An overflow of the stage counter

11
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Through Modulo Operation on Register Index.

and adder results in modulo operation [27]. In this way, with same register index,

different physical registers are accessed at each II cycle. Figure 4.1 shows RF with

four registers to manage the value of a variable d across four different iterations.

Mapping requires writing di in virtual register 0. Hence, for iteration 2, with stage

counter as 2, d2 is written into physical register 2. At the same time, we can access

the older value during iteration 0 (d0) from register 0. In the next II cycle, with stage

counter as 3, d3 is written into physical register 3. Next, stage counter is overflowed

with value 0 and d4 is written in physical register 0 and so on. Such implementation

requires the total number of rotating registers as the power of 2 [27].

Figure 4.2 shows local unified RF with both rotating and nonrotating parts. Read

reg1, read reg2 and write are register index for the read and write operations, respec-

tively. The control unit provides the value of c; c is the maximum register index

inside rotating section and decides the boundary between rotating and nonrotating

parts. It gives the flexibility to support different register requirements for different

loops. It is explained later in this section, about how to decide the value of c. If

the register index is less than or equals to c, then we need to access rotating section.

The select signal is generated as 0 and RF can be accessed for recurring values, as

12



described through Figure 4.1. In this case, the addition of the given register index

and stage counter is done. Then, the modulo operation is performed by ANDing the

result with c, as c + 1 is the total number of rotating registers [26]. The output of

the AND gate locates correct register number to read/write recurring values. When

stage counter reaches the value of c, it is reset to zero for the next iteration. On the

other hand, if the register index is greater than c then, the control unit generates a

select signal as 1 and register index just bypasses the adder driving the read/write

port of the RF. Hence, both recurring and read-only values can be managed in the

unified RF by using the simple hardware.

At the beginning of the loop execution, the read-only operands are pre-loaded into

local registers of nonrotating part of the RF of corresponding PEs. As the compiler

is aware of the PEs that require live-in values or read-only operands, it can generate

instructions accordingly (as part of the prologue) to pre-load them.
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Figure 4.2: Local Unified RF with Regular Register File. Configuration by Compiler
Decides Number of Registers Inside Rotating and Nonrotating Sections.
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4.2 Determining the Register Requirement During Mapping

By analyzing the mapping of the operations on PEs, it is easy to find the number

registers that each node requires to manage the nonrecurring variables in a PE and

that for a recurring operation. This analysis would reveal the minimum number of

registers required inside the rotating and nonrotating sections of unified RF. Algo-

rithm 1 provides the number of nonrotating registers essential to map an operation.

If any of the operands is constant and if its value is larger than maximum value

supported by immediate bits in the PE instructions, such nonrecurring variable can

be pre-loaded in the reserved nonrotating register. In this way, live-in data can be

preloaded and managed in the RF, which can be then used by the operands during

the kernel execution.

Algorithm 1: getNonrotatingRegisters(Input Node vi, Input PE pi)

begin

total operands ←get number of operands(vi);

operands[total operands] ←get operands(vi);

nonrotating reg ← 0;

i← 0;

while i < total operands do

oi ← operands[i];

if ((is constant(oi) && (is greater than max immediate(oi)) then

nonrotating reg++;

i++;

nonrotating reg per PE[pi]+ = nonrotating reg;

return nonrotating reg;
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Algorithm 2: getRotatingRegisters(Input Node vi, Input PE pi)

begin

total successors ←get number of successors(vi);

successors[total successors] ←get successors(vi);

rotating reg ← 0;

i← 0;

while i < total successors do

si ← successors[i];

if (isMappedMoreThanACycleApart(vi, si)) then

reg needed← calculate distance and reg requirement(vi, si);

if (reg needed > rotating reg) then

rotating reg ← reg needed;

i++;

rotating reg per PE[pi]+ = rotating reg;

return rotating reg;

Similarly, algorithm 2 provides the number of rotating registers required to pre-

serve recurring values. Given an operation, it checks for the type of the dependency

between the operations. With the availability of absolute mapping times of the node

and its successor node; the mapping distance can be calculated in terms of II [14].

In this way, correct register requirements can be computed to map each of the op-

eration and its successor pairs for both intra-iteration dependency and loop-carried

dependency [14]. Finally, the algorithm provides a total number of rotating regis-

ters required to map a node vi on PE pi. These both algorithms together enable a

mapping technique to reserve corresponding registers during the mapping.
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4.3 Register Reservation for Efficient Usage

A natural choice to design local unified RF is through the fixed hardware, where it

can have pre-decided numbers of registers inside the rotating and nonrotating sections

[25]. Once the number of rotating and nonrotating registers required are known, the

RF size can be fixed. Although making such design choices for target loop(s) is

one alternative, it lacks the support for the general purpose computing and may not

always work. For example, different loops in the target application(s) can require the

different number of rotating and nonrotating registers. In such scenarios, the RF size

should be increased to accommodate the requirement; else a valid mapping may not

be achieved. An important fact is that it is not the issue of local unified RF, but is,

in general, an issue of managing both types of variables through any RF architecture.

Algorithm 3 shows register reservation inside the rotating and nonrotating sections

of local unified RF. It keeps track of register allocation per PE for mapped operations.

Calculation of the number of nonrotating and rotating registers, required by the

current node is provided by the functions of Algorithm 1 and 2, respectively. Before

the register reservation, Algorithm 3 ensures register availability, based on the past

allocation. reg[pi] indicates total registers utilized by PE pi. For a PE pi, based on

the reservation of registers inside rotating and nonrotating sections, we can configure

boundary between two sections, for each loop execution. This configuration boundary

can vary for different mappings of different loops as we obtain different combinations

of registers inside rotating and nonrotating section with a total of N registers. With

this unique feature, the mapping technique is capable of efficient register usage due

to reserving any number of registers inside nonrotating and rotating section, finding

a valid mapping for various loops, without changing the hardware. The effectiveness

of such reservation is demonstrated later in the section 5.3.
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Algorithm 3: Reserve Registers(Input PE pi, Input RF size N ,Input node vi)

begin

n← reg[pi] ; // Total reserved registers

r1 ←get number of nonrotating registers(vi, pi);

r2 ←get number of rotating registers(vi, pi);

r ←get nearest power of two(configuration[pi] + r2);

nr ← r1 + (n− configuration[pi]) ; // Nonrotating registers required

n′ ← r + nr ; // Total registers needed

n← n + r1 + r2 ; // Total registers to be reserved

if n′ 6 N then

reg[pi]← n ; // Update actual registers needed

configuration[pi]← configuration[pi] + r2 ; // Update configuration

configuration power of two[pi]← r;

return true;

return false;

Moreover, Algorithm 3 ensures that size of the rotating section is equal to the near-

est power of 2, calculated as r, satisfying the constraint due to modulo addition imple-

mentation. Total reserved registers n′ should be less than RF of size N . Once the reg-

ister requirements are met, currently reserved registers reg[pi] and current configura-

tion boundary configuration[pi] is updated accordingly. configuration power of two[pi]

is the final configuration, aligned to the nearest power of 2. At the end of the map-

ping, instructions for configuring the RF of each PE can be generated based on

configuration power of two[pi] and fed to control unit of Figure 4.2. Control unit

generates c as configuration power of two[pi] - 1, enforcing a boundary between the

rotating and nonrotating sections which aids to calculate the modulo register index.
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4.4 Integration with a CGRA Mapping Technique

Figure 4.3 shows a flowchart with a high-level overview of an integration of the

proposed methodology with a CGRA mapping technique. Firstly, it takes a DFG

as an input, generates a modulo schedule and forms set of edges/clusters/cliques,

followed by initial cost calculation or initial resource reservation. Then, it tries to

map an operation from the set on a PE. If it finds a PE slot for that operation,

it checks for register availability else finds another PE. If no other PE is available,

it increases II by 1. Register reservation can be made through the algorithm 3. If

II value crosses the preset limit, it terminates mapping, resulting in failure. Upon

successfully mapping all the operations, a valid mapping is generated, ensuring that

nodes are mapped on PEs targeting the register availability within unified RF. In this

way, proposed solution can be combined with any CGRA compiler technique.

Generate 
Configurations

Mapping
Succeeded

Yes

Input Data Dependency Graph

Generate Edge Set/Clusters/Cliques

II ←MII

Calculate Costs/Reserve Resources

II > Total 
Attempts?

II ← II + 1

Mapping
Failed

Yes
No

No
Select Target Node & PE

All Nodes Mapped?

Reserve Registers

Success?

Update Costs/Resources

Another PE
Available?

No

Yes

Yes

Success?

Yes

No

No

Figure 4.3: High Level View of Register Reservation Function Integrated with a
CGRA Mapping Technique
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Chapter 5

EXPERIMENTAL RESULTS

For the mapping experiments throughout, the baseline target architecture is a 4×4

homogeneous CGRA, connected in a 2D torus as shown in Figure 3.1(c). PEs are

capable of performing fixed-point operations with the latency of 1-cycle. The memory

bus is shared among PEs in a row. So, only one PE from a row can access the data

memory during each cycle. For the load and store operations, two instructions are

executed; one generates the address and other loads/stores the data. Load or store of

the data takes place in the same row where the corresponding address is generated,

and the bus is asserted. In the target architecture, each PE can access RF of four 32-

bit registers. For evaluation of the approach, state-of-the-art register aware compiler

technique for CGRAs REGIMap [14] is used. Several innermost loops are extracted

from MiBench [31] benchmarks, which are computationally critical or important to

represent a variety of application kernels.

As the incorporated CGRA ISA has a 12-bit immediate field, read-only data

up to 12-bits can be provided as an immediate value. It is assumed that all the

approaches compared can manage up to 12-bit value as immediate. In the proposed

approach, for preloading 32-bit value, three cycles are required to load a nonrecurring

variable (due to a provision of a 12-bit immediate field with ISA). During the kernel

execution, some intermediate values are generated which are read-only and live within

II cycles (a shorter period than even the execution of one loop iteration). To be fair

in comparison, it is assumed that prior works also store them in either local rotating

registers or global RF, instead of using constant memory. The proposed approach

can store them into local registers inside nonrotating part.
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To show the need for managing all variables within scalable local RF, proposed

solution is compared with the approach of accessing data from global RF. Global

RF yields mappings of equal quality in most of the cases. Hence,the evaluations are

done on CGRAs of different sizes, from 4× 4 to 32× 32, demonstrating the scalabil-

ity directly at RTL level. Then, it takes on comparing with accessing data through

constant memory. In this case, cycle time does not get affected and consequently,

comparison take place in terms of the mapping quality only. All of these experiments

demonstrate the efficacy of the claims about how prior approaches can degrade the

performance. Results are validated on a cycle-accurate simulator gem5 [32].

5.1 Local Unified RF Achieves Better Cycle Time

To compare against state-of-art approaches that manage nonrecurring variables

into global RF, the RTL of CGRA with local unified RF and that of CGRA with

global RF shown in Figure 3.1(b), is modeled. RTL is synthesized and taken through

ASIC flow using the Cadence RTL compiler with 32 nm standard cell library. The

functionality of the CGRA implementation is verified at every step of the ASIC

flow. To demonstrate the effectiveness of the RTL implementation using Verilog,

the measurements are taken at 250 MHz, as previous works targeted frequencies

in the range of 100-200 MHz [14, 15, 16, 27]. Power estimations are done using

Table 5.1: Results for 4x4 CGRA @ 250 MHz for 32 nm CMOS Technology

Parameter Local Unified RF Global RF

Number of Registers 4 per PE 64

Area (sq. um) 463915 541822

Power (mW) 127 125
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Figure 5.1: Comparison of Latency for CGRA with Local Unified RF & Global RF

Synopsys PrimeTime. Measurements in Table 5.1 show that implemented 4 × 4

CGRA architecture can achieve the maximum power efficiency of 32 GOPS/W and

on average that of 21.5 GOPS per watt due to IPC of 10.75 for REGIMap [14], which

is in the expected range.

For both global RF and local RF, the cycle time and read-write access latency to

RFs is compared, at their best frequencies. Global RF structure chosen is one shown

in Figure 3.1(b) and described in backgrounds section. Results are demonstrated for

various CGRA sizes, to highlight the issue of the scalability. From Figure 5.1, we can

see that for the different size, cycle time increases rapidly for CGRA with global RF,

as compared to the proposed solution. On average, use of local unified RF reduces

cycle time by 17.38% and, read access latency by 23.38%. These results ensure the
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need for managing nonrecurring and recurring variables locally. It reduces the cycle

time and in-turn, total execution time, compared to past approaches. Hence, unified

local RF turns out to be scalable solution improving the performance.

5.2 Local Unified RF Improves Performance

Another way to access read-only operands is through on-chip constant memory,

as discussed in section 3. The proposed solution of local unified RF is compared to

the CGRA with constant memory and it is shown that how we can improve perfor-

mance by eliminating additional loads, through the proposed approach. To access

the nonrecurring variables from constant memory, load operations are performed by

using 4 KB on-chip memory.

Figure 5.2 compares the II between the proposed solution and data management
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Figure 5.2: Managing All the Variables Within Local Unified RF Reduces II as
Compared to CGRA Accessing On-chip Constant Memory.
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Accessing Local Unified RF Reduces Mapped Nodes by 22%
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Figure 5.3: Managing Data with Local RF Can Eliminate Additional Load Opera-
tions, Compared to Accessing Constant Memory

through constant memory. On average, the proposed approach reduces II is reduced

by 17.5%. Figure 5.3 shows a reduction in mapped nodes by 22.40%, due to the

elimination of additional load-cycles required in the case of accessing data from con-

stant memory. We can see the effectiveness of using local RF, which eliminates 10

and 16 load operations respectively, in the case of rsynth (office) and sha (security),

as compared to accessing constant memory. Hence, it enforces a reduction in II,

improving the performance. On the other hand, loops from rijndael (security) and

stringsearch (office) achieve same II, but reduces additional load nodes by 4 and 2,

respectively. Consequently, proposed approach reduces the pressure on memory and

saves PE resources from consuming unnecessary power.
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RF Configuration and Reservation Improves Register Utilization
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Figure 5.4: For a given Mapping, Provision of RF Configuration Results in Reduced
RF Size, as Compared to RF with Fixed Numbers of Registers.

Moreover, on average pre-loading cycles are 3.5, varying between 3-6 for different

loops. This means that the pre-loading cycles are negligible compared to the gain

of II reduction by 18%. Otherwise, executing a performance-critical loop in 100,000

cycles will still take additional 1800 CGRA cycles even with the assumed load latency

of 1 cycle. This emphasizes the requirement of accessing data within local RF instead

of doing so from on-chip memory.

5.3 Unified RF Reduces Register Requirements

To show the effectiveness of the proposed register reservation approach, the reg-

isters required for various loops are compared, as shown in Figure 5.4. Evaluations

24



show that for a given mapping, use of RF configuration reduces RF size by 14.26%,

as compared to RF with fixed number of rotating and nonrotating registers. For ex-

ample, susan requires two nonrotating and four rotating registers for different PEs.

So, in the case of fixed number of registers, we need RF of size six for all PEs. But

through the proposed approach, we can have local RF of four registers for all PEs;

one PE can configure all four registers as rotating and other can opt for RF as a

nonrotating section only. Thus, proposed approach results into better register usage.

Similarly, at the architectural level, prior approaches of fixed RF hardware needs 4

registers PE, totaling 64 registers for a 4 × 4 array. However, proposed approach

needs on average about 3 registers, totaling just 48 registers. In this way, proposed

RF configuration and register management can result in efficient register utilization.
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Chapter 6

SUMMARY

This work advocates for a scalable solution to manage both recurring and non-

recurring variables effectively in a single nonrotating RF. Firstly, the issues related

to state-of-the-art techniques of data management i.e. accessing data via global RF

and from constant memory are discussed. The former increases cycle time and does

not scale and the latter increases II due to additional load operations. Then, local

unified RF, a novel approach to managing all variables exclusively through single

RF is proposed, which is an efficient solution. This increases complexity at compiler

level but, results in better performance with efficient register utilization. Finally, the

advantages of the technique are presented by comparing it with prior approaches of

accessing variables, regarding scalability and performance of the CGRA. From the

experiments done, it can be concluded that local unified RF is better than other

existing solutions to manage variables efficiently on-chip.
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Chapter 7

FUTURE WORK

Some of the future work can be visualized in the purview of both CGRA compilers

and register file architectures and can be encapsulated as follows.

• One problem in CGRA design is an effective use of registers across various RF

structures. For example, if the array design must use both local and global

RFs, which registers should be allocated by the compiler first while mapping?

Such decisions critically affect the performance and design costs, leaving a scope

for such optimization techniques. The well-designed scheme can achieve much

higher power-efficiency in such scenarios.

• CGRA register files do contain enough registers for a kernel acceleration. How-

ever, in many cases, few operations (say one with a large inter-iteration depen-

dency) may require a higher number of registers than what is accessible to the

processing elements. In such cases, break-down of such register requirement and

distributed allocation of the registers can be unique and can certainly improve

the design and performance of these promising accelerators.

27



REFERENCES

[1] Allan Carroll, Stephen Friedman, Brian Van Essen, Aaron Wood, Benjamin
Ylvisaker, Carl Ebeling, and Scott Hauck. Designing a coarse-grained reconfig-
urable architecture for power efficiency. In Department of Energy NA-22 Uni-
versity Information Technical Interchange Review Meeting, 2007.

[2] George Theodoridis, Dimitrios Soudris, and Stamatis Vassiliadis. A survey of
coarse-grain reconfigurable architectures and cad tools. In Fine-and Coarse-
Grain Reconfigurable Computing, pages 89–149. Springer, 2007.

[3] David Koeplinger, Christina Delimitrou, Raghu Prabhakar, Christos Kozyrakis,
Yaqi Zhang, and Kunle Olukotun. Automatic generation of efficient accelerators
for reconfigurable hardware. 2016.

[4] Shuai Che, Jie Li, Jeremy W Sheaffer, Kevin Skadron, and John Lach. Accelerat-
ing compute-intensive applications with gpus and fpgas. In Application Specific
Processors, 2008. SASP 2008. Symposium on, pages 101–107. IEEE, 2008.

[5] Artem Vasilyev, Nikhil Bhagdikar, Ardavan Pedram, Stephen Richardson, Sha-
har Kvatinsky, and Mark Horowitz. Evaluating programmable architectures for
imaging and vision applications. 2012.

[6] Opencl optimization case study: Simple reductions. http:
//developer.amd.com/resources/articles-whitepapers/
opencl-optimization-case-study-simple-reductions/, 2010. Accessed:
2010-08-24.

[7] Mehrzad Samadi, Amir Hormati, Janghaeng Lee, and Scott Mahlke. Paragon:
collaborative speculative loop execution on gpu and cpu. In Proceedings of the
5th Annual Workshop on General Purpose Processing with Graphics Processing
Units, pages 64–73. ACM, 2012.

[8] Shri Hari Rajendran Radhika, Aviral Shrivastava, and Mahdi Hamzeh. Path
selection based acceleration of conditionals in cgras. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2015, pages 121–126. IEEE,
2015.

[9] Tianyi David Han and Tarek S Abdelrahman. Reducing branch divergence in gpu
programs. In Proceedings of the Fourth Workshop on General Purpose Processing
on Graphics Processing Units, page 3. ACM, 2011.

[10] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennu-
paty, Per Hammarlund, et al. Debunking the 100x gpu vs. cpu myth: an eval-
uation of throughput computing on cpu and gpu. ACM SIGARCH Computer
Architecture News, 38(3):451–460, 2010.

28

http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/


[11] Richard Vuduc, Aparna Chandramowlishwaran, Jee Choi, Murat Guney, and
Aashay Shringarpure. On the limits of gpu acceleration. In Proceedings of the
2nd USENIX conference on Hot topics in parallelism, pages 13–13. USENIX
Association, 2010.

[12] Gene M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference, pages 483–485. ACM, 1967.

[13] Frank Bouwens, Mladen Berekovic, Bjorn De Sutter, and Georgi Gaydadjiev.
Architecture enhancements for the adres coarse-grained reconfigurable array. In
High Performance Embedded Architectures and Compilers, pages 66–81. Springer,
2008.

[14] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Regimap: Register-
aware application mapping on coarse-grained reconfigurable architectures
(cgras). In Proceedings of the 50th Annual Design Automation Conference,
page 18. ACM, 2013.

[15] Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu, Srihari
Cadambi, R Reed Taylor, and Ronald Laufer. Piperench: a co/processor for
streaming multimedia acceleration. ACM SIGARCH Computer Architecture
News, 27(2):28–39, 1999.

[16] Hertej Singh, Ming-Hau Lee, Guangming Lu, Fadi J Kurdahi, Nader
Bagherzadeh, and M Chaves Eliseu Filho. Morphosys: an integrated recon-
figurable system for data-parallel and computation-intensive applications. Com-
puters, IEEE Transactions on, 49(5):465–481, 2000.

[17] Changmoo Kim, Mookyoung Chung, Yeongon Cho, Mario Konijnenburg, Soo-
jung Ryu, and Jeongwook Kim. Ulp-srp: Ultra low power samsung reconfigurable
processor for biomedical applications. In Field-Programmable Technology (FPT),
2012 International Conference on, pages 329–334. IEEE, 2012.

[18] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-
dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. Dyser: Unifying
functionality and parallelism specialization for energy-efficient computing. IEEE
Micro, 5(32):38–51, 2012.

[19] Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural networks.
In IEEE International Solid-State Circuits Conference, ISSCC 2016, Digest of
Technical Papers, pages 262–263, 2016.

[20] B Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In Proceedings of the 27th annual international symposium on
Microarchitecture, pages 63–74. ACM, 1994.

[21] James C Dehnert and Ross A Towle. Compiling for the cydra 5. In Instruction-
Level Parallelism, pages 181–227. Springer, 1993.

29



[22] Hee-Seok Kim, Minwook Ahn, John A Stratton, and Wen-mei W Hwu. Design
evaluation of opencl compiler framework for coarse-grained reconfigurable arrays.
In Field-Programmable Technology (FPT), 2012 International Conference on,
pages 313–320. IEEE, 2012.

[23] Taewook Oh, Bernhard Egger, Hyunchul Park, and Scott Mahlke. Recurrence
cycle aware modulo scheduling for coarse-grained reconfigurable architectures.
In ACM Sigplan Notices, volume 44, pages 21–30. ACM, 2009.

[24] Hyunchul Park, Kevin Fan, Scott A Mahlke, Taewook Oh, Heeseok Kim, and
Hong-seok Kim. Edge-centric modulo scheduling for coarse-grained reconfig-
urable architectures. In Proceedings of the 17th international conference on Par-
allel architectures and compilation techniques, pages 166–176. ACM, 2008.

[25] Brian Van Essen, Robin Panda, Aaron Wood, Carl Ebeling, and Scott Hauck.
Managing short-lived and long-lived values in coarse-grained reconfigurable ar-
rays. In Field Programmable Logic and Applications (FPL), 2010 International
Conference on, pages 380–387. IEEE, 2010.

[26] Dipal Saluja. Register file organization for coarse-grained reconfigurable archi-
tectures: Compiler-microarchitecture perspective. Master’s thesis, Arizona State
University, 2014.

[27] B Mei, M Berekovic, and JY Mignolet. Adres & dresc: Architecture and com-
piler for coarse-grain reconfigurable processors. In Fine-and coarse-grain recon-
figurable computing, pages 255–297. Springer, 2007.

[28] Hyunchul Park, Kevin Fan, Manjunath Kudlur, and Scott Mahlke. Modulo
graph embedding: mapping applications onto coarse-grained reconfigurable ar-
chitectures. In Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems, pages 136–146. ACM, 2006.

[29] Zion Kwok and Steven JE Wilton. Register file architecture optimization in a
coarse-grained reconfigurable architecture. In Field-Programmable Custom Com-
puting Machines, 2005. FCCM 2005. 13th Annual IEEE Symposium on, pages
35–44. IEEE, 2005.

[30] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Epimap: using epi-
morphism to map applications on cgras. In Proceedings of the 49th Annual Design
Automation Conference, pages 1284–1291. ACM, 2012.

[31] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. Mibench: A free, commercially representative
embedded benchmark suite. In Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, pages 3–14. IEEE, 2001.

[32] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 simulator. ACM SIGARCH Computer Architecture
News, 39(2):1–7, 2011.

30


	LIST OF TABLES
	LIST OF FIGURES
	1 
	2 
	2.1 Mapping of Loops on CGRAs
	2.2 How to Use Registers?

	3 
	4 
	4.1 Accessing Registers in Unified RF
	4.2 Determining the Register Requirement During Mapping
	4.3 Register Reservation for Efficient Usage
	4.4 Integration with a CGRA Mapping Technique

	5 
	5.1 Local Unified RF Achieves Better Cycle Time
	5.2 Local Unified RF Improves Performance
	5.3 Unified RF Reduces Register Requirements

	6 
	7 

	REFERENCES


