
RESIDUE NUMBER SYSTEM ENHANCEMENTS FOR PROGRAMMABLE

PROCESSORS

by

Rooju Gnyanesh Chokshi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

ARIZONA STATE UNIVERSITY

December 2008



RESIDUE NUMBER SYSTEM ENHANCEMENTS FOR PROGRAMMABLE

PROCESSORS

by

Rooju Gnyanesh Chokshi

has been approved

November 2008

Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Sarma Vrudhula

Rida Bazzi

ACCEPTED BY THE GRADUATE COLLEGE



ABSTRACT

Today’s embedded processors face multi-faceted challenges in the form of stringent

performance, area, power and time-to-market requirements. There is a perpetual demand

for embedded processors with lower power, yet higher performance, especially in personal

wireless communication and multimedia domains.

The 2’s complement number system imposes a fundamental limitation on power-

performance efficiency as a result of sequential carry propagation. The Residue Number

System (RNS) breaks this limitation by partitioning operations into parallel independent

components resulting in fast and power-efficient hardware. While the performance and

power benefits of these RNS components have been exploited in application specific hard-

ware, it has not been possible to capitalize on their advantages in a programmable processor.

The main challenge lies in mitigating overheads of conversion operations that are needed

to transform operands from 2’s complement to RNS and vice-versa.

This work meets this challenge by synergistic architecture, micro-architecture, com-

ponent co-design which enables hiding these overheads effectively, paving the way for sig-

nificant performance benefits. Additionally, compiler techniques that rely on these en-

hancements are also proposed for automated code mapping. Concentration on mitigating

overheads across design levels results in an RNS-based extension to Reduced Instruction

Set Computer (RISC) processors that demonstrates application performance improvement

of 21 percent and functional-unit power improvement of 54 percent in the average.

iii



To

my family

iv



ACKNOWLEDGMENTS

I would like to thank my advisor and committee chair Dr. Aviral Shrivastava but for

whom, this work would have been an unplanted seed. I would like to thank him for those

energetic and stimulating discussions we had. His infinite patience, support, invaluable

guidance and encouragement has been the backbone in this extremely crucial, yet most

exciting endeavor of my master’s degree. His never-say-die attitude has never ceased to

amaze me.

In the same breath, I would also like to thank Dr. Krzysztof Berezowski, for not only

bringing to attention the powers of Residue Number System initially, but also for lending

his experience to bring me up to date with the state-of-the-art. This work would have never

developed a strong foundation if it were not for his continuous and zealous interest in it.

I would also like to thank Dr. Sarma Vrudhula and Dr. Rida Bazzi for the invaluable

support they provided me as committee members. I also thank my colleagues at the

Compiler-Microarchitecture Laboratory, Jong-eun Lee, Sai Mylavarapu, Reiley Jeyapaul,

Amit Pabalkar and Arun Kannan for their interesting perspectives on my research. My

heartfelt gratitude also extends to Amit, Arun, Khushboo and Vivek for making our lab an

energetic and lively place with humor that ranged from rib-tickling to side-splitting. Being

picked on has never been so much fun!

I would like to acknowledge the Engineering Career Center for providing me with an

internship opportunity which lent completeness to my education. I would like to thank

Microchip Technology, Inc, Chandler and my mentor Nicky Ayoub for exposure to current

technologies, which broadened my engineering perspective.

I am very grateful to my parents, Gnyanesh and Mona Chokshi, and sisters, Prachi

v



and Pratichi. Their unflinching love, support and belief in me has made life’s challenges

less difficult to surmount. To them, I dedicate this thesis.

vi



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Shortcomings Of 2’s Complement Arithmetic . . . . . . . . . . . . . . . . . 1

B. Residue Number System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

B.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

B.2. Conversions Into And From Residue Number System . . . . . . . . . 3

B.3. Major Research Areas In RNS . . . . . . . . . . . . . . . . . . . . . 4

C. Summary Of Major Contributions . . . . . . . . . . . . . . . . . . . . . . . 5

D. Organization Of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. PREVIOUS RNS RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A. RNS Functional Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A.1. Conversion Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A.2. Computational Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B. Applications Of RNS Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 8

C. Programmable RNS Architectures . . . . . . . . . . . . . . . . . . . . . . . 9

III. RESIDUE NUMBER SYSTEM EXTENSION TO A RISC PROCESSOR . . . 11

A. Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B. Microarchitecture Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C. Moduli Set Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



CHAPTER Page

D. Binary-to-RNS (Forward) Conversion . . . . . . . . . . . . . . . . . . . . . . 14

E. RNS Adder Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

F. RNS Multiplier Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

G. RNS-to-Binary (Reverse) Conversion . . . . . . . . . . . . . . . . . . . . . . 18

H. Synthesis Of RNS Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I. Processor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

I.1. Case Study: Matrix Multiplication . . . . . . . . . . . . . . . . . . . 21

IV. COMPILATION FOR RESIDUE NUMBER EXTENSION . . . . . . . . . . . 24

A. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B. Basic Code Mapping Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.1. Top Level Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.2. Finding Maximal RNS Eligible Subgraphs . . . . . . . . . . . . . . . 25

B.3. Estimating Profitability Of A MRES . . . . . . . . . . . . . . . . . . 28

C. Improvements Upon Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . 28

C.1. Forward Conversions Within Loops . . . . . . . . . . . . . . . . . . . 28

C.2. Improved Pairing Of Additions . . . . . . . . . . . . . . . . . . . . . 29

V. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A. Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B. Benchmark Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

C. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

C.1. Evaluation Of Manually Mapped Benchmarks . . . . . . . . . . . . . 36

C.2. Evaluation Of Compiler Mapped Code . . . . . . . . . . . . . . . . . 37

viii



CHAPTER Page

C.3. Evaluation across design corners . . . . . . . . . . . . . . . . . . . . 38

VI. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . 40

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



LIST OF TABLES

Table Page

I Instructions For RNS Computation . . . . . . . . . . . . . . . . . . . . . . . 12

II Multiplier channel delay for different 32-bit moduli-sets . . . . . . . . . . . 18

III Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

IV Computational requirements for Matrix Multiplication . . . . . . . . . . . . 22

V Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

x



LIST OF FIGURES

Figure Page

1 Classification of Reverse Converters . . . . . . . . . . . . . . . . . . . . . . 7

2 (a) Naive integration (b) Separation of conversion from computation . . . . 11

3 (a) Conventional CSA reduction with modulo adder (b) CSA Reduction with

the (S,C) representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Binary-to-RNS (Forward) Converter . . . . . . . . . . . . . . . . . . . . . . 15

5 RNS Channel Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 RNS Channel Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 RNS-to-binary Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Typical RISC Pipeline with RNS Functional Units . . . . . . . . . . . . . . 21

9 Mapping to RNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10 Pairing of Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

11 Moving Foward Conversions Out of Loops . . . . . . . . . . . . . . . . . . . 29

12 Linearizing Adds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

13 Addition Linearizing Transformation . . . . . . . . . . . . . . . . . . . . . . 31

14 Typical RISC Pipeline with RNS Functional Units . . . . . . . . . . . . . . 34

15 Execution times for manually-optimized benchmarks . . . . . . . . . . . . . 36

16 Percentage improvement in execution times for compiler-optimized benchmarks 37

17 Power vs. Performance - DCT benchmark . . . . . . . . . . . . . . . . . . . 38

xi



I. Introduction

Embedded systems today have transformed from simple, single-function control sys-

tems to highly complex, multipurpose computing platforms. Higher performance is no

longer the only important criterion in such designs. The advent and popularity of personal

wireless communication and handheld, portable multimedia and communication devices in

the last decade has created stringent requirements on performance, power, cost and time-

to-market. The omnipresence of such battery-powered devices has created a perpetual

demand for cheap, high performance, and power efficient embedded processors.

A. Shortcomings Of 2’s Complement Arithmetic

The binary 2’s complement number system forms the basis of contemporary computer

arithmetic. However, it imposes a fundamental limit on the achievable performance and

power. Consider the n-bit Ripple Carry Adder (RCA). Although this n-bit adder is simplest

and most efficient in terms of area and power, the carry propagation chains lead to an O(n)

delay in computation, which is too slow for the performance requirements of the present

day. As a result, a large number of sophisticated adders employing complex carry prediction

schemes have been developed. For example, the Brent-Kung Adder [4] and the Kogge-Stone

Adder [20], employ complex carry prefix networks to speed up computations by reducing

the delay to O(logn). However, these parallel prefix networks are much more expensive in

terms of area and power consumption.

Furthermore, multipliers for 2’s complement binary arithmetic also have serious area

and power requirements. The speed of the multiplier crucially depends on the depth of the

partial product reduction tree as well as the final fast carry propagate adder (CPA). The

reduction of the O(n2) partial product bits with O(logn) delay is quite expensive in terms

of area and power.



2

These limitations have led to exploration of alternative representations for doing com-

puter arithmetic [41] and the residue number system (RNS) has been identified as a very

promising alternative.

B. Residue Number System

In a RNS, integers are broken into smaller components such that important operations,

can be performed on smaller components independently of each other.

B.1. Definition

A residue number system is characterized by a set of relatively prime integers (i.e.,

no pair from the set contains a common nonunity factor) P = (p1, p2, ..., pk), the moduli

set. Any number N ∈ [0,M) where M =
∏k

i=1 pi is the dynamic range of the system,

can be uniquely represented in RNS as a k-tuple (n1, n2, ..., nk), where ni = |N |pi is the

remainder of dividing N by pi. Resultantly, certain operations ◦ ∈ {+,−,×} on two

RNS operands X = (x1, x2, ..., xk) and Y = (y1, y2, ..., yk) can be performed as X ◦ Y =

(x1 ◦ y1, x2 ◦ y2, ..., xk ◦ yk). The conversion from residue number system to 2’s complement

is done by applying the Chinese Remainder Theorem.

This form of computation has a very important property that the processing of the

i-th component of the result depends only on the i-th components of the operands. This

distribution of computation into smaller bit-width and independent channels, not only

reduces the carry propagation length in adders, but also dramatically reduces the number

of partial products that need to be accumulated in multipliers, leading to remarkably faster

and low power implementations of these operations. Also, Freking and Parhi [8] argue that

RNS may reduce circuit’s switching activity, and may benefit from more aggressive supply

voltage scaling.



3

B.2. Conversions Into And From Residue Number System

Although residue number systems have unique properties that enable faster compu-

tations on integers, there are also overheads associated, in the form of transforming repre-

sentation from binary to residue (called forward conversion) and vice-versa (called reverse

conversion). While forward conversion involves computing residues by the modulo opera-

tion, reverse conversion is a more complex operation. There are two general methods to

obtain a binary number X from its residue representation, Mixed Radix Conversion (MRC)

and Chinese Remainder Theorem (CRT).

a. Mixed Radix Conversion

Given a RNS defined on the moduli-set P = (p1, p2, ..., pk) and a number (x1, x2, ..., xk)

in residue representation, the binary number X is computed as

X = ak

k−1∏
i=1

pi + · · ·+ a3p1p2 + a2p1 + a1 (I.1)

where the ai, called the Mixed Radix Coefficients, are calculated as follows:

a1 =
∣∣∣X∣∣∣

p1

= x1, a2 =
∣∣∣Xp1

∣∣∣
p2

, . . . , ai =
∣∣∣ X∏i−1

j=1 mj

∣∣∣
mi

b. Chinese Remainder Theorem

Given a RNS defined on the moduli-set P = (p1, p2, ..., pk) and a number (x1, x2, ..., xk)

in residue representation, the binary number X is computed as

X =
∣∣∣ n∑
i=1

Pi|P−1
i |pixi

∣∣∣
M

(I.2)

where M =
∏k

i=1 pi, Pi = M
pi

and |P−1
i |pi is the multiplicative inverse of Pi modulo pi.

Both these methods involve complex, modular calculations which result in complex

and large circuit implementations that are expensive in both speed and power. Therefore,



4

any RNS based design has to take into consideration the high overheads of conversion. A

computation can only be beneficial if the profits gained in the computational steps exceed

the overheads associated with conversions.

B.3. Major Research Areas In RNS

A significant amount of research has focused on designing extremely fast RNS com-

putational and conversion hardware [25], especially for the conversion from RNS to binary,

since that is a very costly operation.

Another major research area lies in the application of RNS to digital signal and image

processing. The advantages of RNS in application specific hardware for digital filters,

matrix operations, and image processing operations have been well appreciated [23,41,47].

An area which is important but has not received much attention is incorporating RNS

arithmetic into general programmable processors. Although RNS enables much faster addi-

tions and multiplications, magnitude comparison and division are expensive as they do not

lend themselves to the same distributed and parallel computational structure as addition

and multiplication. This implies that a RNS-only processor would be too restrictive in its

computational capabilities. Therefore, any processor that seeks to take advantage of RNS

should need to have a hybrid design that supports both 2’s complement and RNS arith-

metic. However, in such hybrid processor, the conversion operations have very significant

overhead, and can outdo all advantages of fast and low-power RNS arithmetic units. Conse-

quently, there have been few previous approaches to RNS-based processor design and they

too have focused on power and area reduction and not on application performance [5, 16].

Through this work, we seek to bring forth the immense benefits of residue number sys-

tem so that a large variety of existing algorithms can take advantage of high performance



5

computation. Through a series of synergistic instruction-set-architecture, microarchitec-

ture, and component design decisions, we produce an RNS extension to an existing RISC

processor that is able to demonstrate both performance and power improvements. How-

ever, having a microarchitecture extension is just one side of the coin and it naturally leads

to the problem of compilation of programs to these RNS extensions. The key question to

be addressed is “Given a program, what portions of code should be mapped to RNS exten-

sion?”. Manual analysis and optimization of code is tedious, at best, for small programs

and certainly infeasible for large programs. Therefore an automated compilation technique

that can analyze and map code is needed. A naive approach to automation would be to

instruct the compiler to map all additions and multiplications to RNS and provide appro-

priate conversions operations at the boundaries. However, this highly optimistic approach

may, indeed, deteriorate performance, if the cost of conversion overheads exceeds the ben-

efits of faster arithmetic. Therefore, we propose novel compilation techniques to tackle the

RNS code mapping problem. To the best of our knowledge, this is the first attempt at

designing compilation techniques for RNS-enabled microprocessors.

C. Summary Of Major Contributions

• We propose a residue number system based extension for a 32-bit RISC architecture.

Synergistic co-design of architecture, microarchitecture and instruction set allows us

to achieve simultaneous performance and power benefits.

• We define the problem of code mapping and propose compilation techniques for prof-

itable mapping.



6

D. Organization Of The Thesis

In Chapter II, we present a summary of previous research in RNS-based design. Details

of our design decisions, workings of our RNS functional units and our architecture model

are presented in Chapter III. In Chapter IV we give a formal definition of the RNS code

mapping problem and our approach to solve it. Chapter V contains a discussion of our

experimental setup, evaluation and results. Future work and conclusions are described in

Chapter VI.



II. Previous RNS Research

Research in RNS-based processor design can be classified into 3 main categories.

A. RNS Functional Units

A.1. Conversion Units

Any RNS-based design involves conversions from binary to RNS, commonly known

as forward conversion, and vice versa, known as reverse conversion. The conversion units

need to be extremely efficient as conversion operations are an overhead in performance and

power in RNS-based systems. Reverse conversion, which is an application of the Chinese

Remainder Theorem, is especially expensive. It is therefore natural that a lot of research

has addressed not only discovering efficient moduli-set, but also faster and power-efficient

reverse converter circuits.

REVERSE CONVERTERS

ROM BASED NON-ROM
   BASED

MRC BASED CRT BASED

NON-ROM
   BASED

ROM BASED

Fig. 1. Classification of Reverse Converters

A classification of the various kinds of techniques is shown in Figure 1. The first

level of classification is made on the basis of what mechanism, whether the mixed radix

conversion ( Equation (I.1)) or Chinese Remainder theorem ( Equation (I.2)), is used to

compute the binary number from residues. An additional classification can be made on

the actual hardware used in the implementation of the reverse converter. The first reverse

converters were based on read-only memories (ROMs) to hold pre-computed moduli used in

computation of the terms of Equation (I.1) and Equation (I.2). These converters, though



8

fast, do not scale well for large modulo operations as the size of the ROM is directly

proportional to the modulus. Non-ROM based converters, instead, compute all the terms

of the equations and are more scalable.

More recent reverse converters [43,45,46] have utilized an alternative simpler formula-

tion of the Chinese Remainder Theorem, called the New Chinese Remainder Theorem [44].

This new formulation transforms the original CRT equation, which needs a large modulo

operation, to use terms with smaller values of moduli.

A.2. Computational Units

A large number of adders and multipliers have been proposed over the years for a

variety of moduli. These can, in general, be classified into ROM and non-ROM based im-

plementations. A review of some of the early modulo adders and multipliers can be found

in [26]. More recently, Hiasat [13] has proposed high-speed modular adders suitable for

VLSI implemenation. Efstathiou et. al [7] have proposed fast modulo adders based on

parallel-prefix carry computation units. Zimmermann [48] proposes circuits for addition

and multiplication modulo 2n − 1 and 2n + 1. Adders are based on parallel-prefix archi-

tectures and multipliers are enhanced so that speed-up techniques like Wallace trees and

Booth-recoding can be used.

B. Applications Of RNS Designs

RNS has long been applied in implementations of digital signal processing hardware

like Digital-to-Analog converters, Finite Impulse Response (FIR) filters, Infinite Impulse

Response (IIR) filters, 2-D FIR filters.

Jenkins and Leon [18], Soderstrand [35], Wang [42], Miller and Polsky [24], have

constructed FIR filters based on residue number system. Huang et al [17], Shanbhag and



9

Siferd [33] have utilized RNS to realize efficient pipelined 2-D FIR filters. Soderstrand and

Sinha [37], Sinha and Loomis [22] have suggested the implementation of IIR filters using

RNS. Moreover, RNS has also been used in the design of 1-dimensional [27, 28, 30, 31] and

2-dimensional Discrete Wavelet Transform architectures [21].

RNS has also been used to speed up RSA encryption and decryption [2] and for high-

speed Elliptic Curve Cryptography (ECC) [32]

RNS-based architectures have also been explored for lesser-known applications like

adaptive beamforming, a form of modified Gauss elimination [19].

C. Programmable RNS Architectures

A comparitively lesser amount of research has focussed on the development of pro-

grammable RNS microprocessors.

Griffin and Taylor [9] first proposed the RNS RISC architecture as a future research

area. Vergos [16] developed an RNS core supporting RNS addition and multiplication.

The motivation for that work was not the development of a self-contained programmable

RNS-based processor, but to provide a pre-designed IP block for use in IC designs. E.g.

their core does not include conversion from RNS to binary and hence is not complete in

RNS functionality. Also, it does not process operands for the 3 channels in parallel, but

samples them serially and processes them in a pipelined fashion.

Ramirez et al [29] have developed a 32-bit SIMD RISC processor which is purely based

on RNS arithmetic and highly tailored for DSP applications. Their architecture supports

only RNS addition, subtraction and multiplication. Moreover, conversion operations are

not included in their instruction set architecture. This means that hardware units for



10

conversion need to be present as additional stages in the dataflow. Although programmable,

this architecture is limited in the kind of applications it can execute.

Chavez and Sousa [5] proposed a complete architecture for a RNS-based RISC DSP,

primarily focussed on the reduction of power and chip area. They proposed a composite

multiply-and-accumulate block to perform additions, multiplications, and multiply-and-

accumulate operations. Although they did report some performance improvements, they

did not describe any architectural or microarchitectural details of their design.



III. Residue Number System Extension to a RISC Processor

A. Instruction Set Architecture

A first-cut approach to integrate RNS functional units into an existing RISC architec-

ture, could be to attach conversion logic at their inputs and outputs. While this solution

has the advantage of being transparent to system software, it implies that every fast RNS

operation involves forward and reverse conversions as shown in Figure 2(a). As a result,

benefits of faster computation are overshadowed by the cost of conversions. We conclude

that it is important to separate conversion of operands from computations as shown in

Figure 2(b). This implies that there will be separate instructions for computations, and

separate instructions for converting operands from 2s complement binary to RNS, and vice

versa. This chief advantage of this is that now it is possible to reduce conversion overhead

through appropriate instruction scheduling and automated code transformation. Table I

describes the new instructions that we add to the RISC ISA.

RNS ADDER/MULTIPLIER

PIPELINE REGISTERS

PIPELINE REGISTERS

   FORWARD 
CONVERSION

   REVERSE 
CONVERSION

   (a)

RNS ADDER/MULTIPLIER

PIPELINE REGISTER

PIPELINE REGISTER

   FORWARD 
CONVERSION

   REVERSE 
CONVERSION

   (b)

Fig. 2. (a) Naive integration (b) Separation of conversion from computation



12

TABLE I

Instructions For RNS Computation

Operation Mnemonic
Forward Conversion FC
RNS Addition RADD
RNS Subtraction RSUB
RNS Multiplication RMUL
Reverse Conversion RC

B. Microarchitecture Decisions

Multi-operand addition (MOA) using Carry-Save Adders (CSA) play an important

role in the design of RNS functional units. CSA-based addition produces separate carry C

and sum S vectors, that are typically reduced by a final modulo adder to produce the final

residue R = |C + 2S|P (Figure 3(a)). However, modulo adders are slower and consume

more area and power than regular adders. It is well known though, that the C and S

vectors represent the value congruent to the residue R. Therefore, computations on (S,C)

pairs can be aggregated and the final modulo addition can be delayed until the actual

value of the residue is required [34]. Hence, if we choose to represent operands as (S,C)

pairs, we may benefit from speed, area, and power advantages at the same time as the

final modulo adder stage can now be removed (Figure 3(b)). Although this reduces the

complexity of the adder and the forward converter, it introduces additional complexity

in the multiplier and reverse converter. Hence, this is an important system-level design

consideration. However, since forward conversion is required per operand, additions are

typically much more frequent than multiplications, and reverse conversions are rather

infrequent, this representation boosts the overall benefit of RNS extension.



13

            CSA 
       REDUCTION
(ADDER/MULTIPLIER)

MODULO ADDER

X1 X2

            CSA 
       REDUCTION
(ADDER/MULTIPLIER)

X1S X2SX1C X2C

(a) (b)

Fig. 3. (a) Conventional CSA reduction with modulo adder (b) CSA Reduction with the
(S,C) representation

The storage of these double-width operands can be achieved without any micro-

architectural changes, as RISC processors often allow registers and memory to be accessed

as double precision storage spanning 2 registers or memory locations.

C. Moduli Set Selection

The selection of moduli-set is crucial to designing efficient arithmetic and conversion

units. (2n− 1, 2n, 2n + 1) is a very widely used set as it is easy to design efficient functional

and conversion units for it. However it is not well-balanced [6]. For effective balancing, we

desire faster channels to operate on more inputs bits. (2n−1, 22n, 2n +1) has been proposed

by [6]. The power-of-2 channel, which is the fastest among the 3 channels, operates on

twice the number of bits as each of the other two channels. However, our experiments

reveal that, for our design of functional units, the moduli-set (2n − 1, 2k, 2n + 1), k > n

achieves a better balancing of channels. We evaluate the channel balance in the multiplier



14

for different configurations of (k, n) values, including (k, n) = (2n, n), to find the most

balanced configuration for our component design. This evaluation is presented later in this

section, when the design of the multiplier is presented.

A well-known property of numbers of the form 2n ± 1 is that there is a periodicity of

values [34] of |2i+nj |2n±1, with period depending on n. That is:

∀i, j ∈ N ∪ {0}, 2i+nj ≡ |2i|2n−1 (III.1)

∀i, j ∈ N ∪ {0}, 2i+nj ≡ (−1)j |2i|2n+1 (III.2)

Equation (III.1) and Equation (III.2) imply that in a binary weighted representation

of a number, any bit at position i+nj is equivalent, in weight, to a bit at position i, when

considered in the ring of numbers modulo 2n ± 1. Piestrak [34] has used these properties

enable fast and regular designs for RNS functional units.

D. Binary-to-RNS (Forward) Conversion

The forward converter computes residues of the 32-bit input X and produces a pair

(S,C) for every channel. |X|2k is simply the least significant k bits of X. The design for

computation of |X|2n±1 channels is shown in Figure 4

Periodicity of residues allows us to do the computation on X as follows:

|X|2n−1 = |2pnXp + · · ·+ 22nX2 + 2nX1 +X0|2n−1

= |Xp + · · ·+X2 +X1 +X0|2n−1 (III.3)

|X|2n+1 = |2pnXp + · · ·+ 22nX2 + 2nX1 +X0|2n+1

= |(−1)pXp + · · ·+X2 −X1 +X0|2n+1 (III.4)



15

CSA TREE

2
n
-1

pn-1:(p-1)n 2n-1:n n-1:0

C[n-1:0] S[n-1:0]

CSA TREE

2
n
+ 1

pn-1:(p-1)n 2n-1:n n-1:0

C[n-1:0] S[n-1:0]

CORRECTION

(a) (b)

Fig. 4. Binary-to-RNS (Forward) Converter

Thus, we can align the terms Xp through X1 and add them in a CSA tree. In Equa-

tion (III.4), the bits in the negative terms are inverted when they are added in the CSA

tree. For each inversion of a bit at weight 2i+nj , we need to apply a correction of −2i to

the final result. Since, there is always a constant number of inversions in the CSA tree,

the constant correction is added as extra layer of full-adder cells simplified with the carry

input as 0 or 1 according to bits of the correction (hatched layer in Figure 4)

It is important to note that the choice of representing operands in (S,C) form obviates

the need to add a final modulo adder stage to combine S and C vectors.

E. RNS Adder Design

The RNS adder for every channel takes in 2 operands in the form X1 = (S1, C1) and

X2 = (S2, C2), and produces a result X3 = (S3, C3). The adder for the 2k channel is a CSA

tree in which all bits with weight greater than 2k are discarded.



16

CSA TREE

2
n
-1

CSA TREE

2
n
+ 1

CORRECTION

(a) (b)

S
1

S
2

C
1

C
2

C
3S

3

S
1

S
2

C
1

C
2

C
3S

3

Fig. 5. RNS Channel Adders

The adders for the 2n ± 1 channels are shown in Figure 5. Again, the bits are aligned

according to their weights as given by the periodicity and added in a CSA tree. For the

2n +1 channel adder, a constant correction needs to be added to the result of the CSA tree.

The subtraction operation can be implemented by augmenting the inputs of the adders

with logic to conditionally negate the second operand, based on a control signal activated

by the RSUB instruction (omitted from figures for simplicity).

F. RNS Multiplier Design

One way to multiply two RNS numbers (S1, C1) and (S2, C2) is to multiply them in

the form: (S1 + 2C1) · (S2 + 2C2) = S1 · S2 + 2S1 · C2 + 2S2 · C1 + 4C1 · C2. This method

involves the generation and addition of partial products for the four product terms in the

expansion. To avoid this, we first produce two intermediate operands X1 = S1 + 2C1 and

X2 = S2+2C2. Partial products are generated X1 and X2, aligned according to periodicity,



17

S1 S2C1 C2

+ +

Partial Product
Generator

CSA Tree
2 ^ n - 1

S3
C3

S1 S2C1 C2

+ +

Partial Product
Generator

CSA Tree
2 ^ n + 1

S3
C3

Fig. 6. RNS Channel Multipliers

and added in a CSA tree. As in the 2n + 1 channel adder, the 2n + 1 channel multiplier

also needs a fixed correction. The multipliers are shown in Figure 6. Multiplier for the 2k

channel follows the same structure except bits at positions greater than or equal to k in

the CSA tree are discarded.

Note that overhead in the multiplier, of having adders to compute X1 and X2 results

from the choice of having the (S,C) format. However this format enables faster adders and

since additions are more frequent than multiplications in typical applications, it results in

faster application execution.

With this design of RNS multipliers, we can now evaluate various moduli-set con-

figurations for balance. The various configurations for a 32-bit dynamic range, and the

multiplier delay for the 3 channels is shown in Table II. The span in the delays of the 3

channels is the least for the moduli-set (29−1, 215, 29 + 1), which corresponds to n = 9 and

k = 15 in the moduli-set (2n − 1, 2k, 2n + 1) and we choose this to be our moduli-set.



18

TABLE II

Multiplier channel delay for different 32-bit moduli-sets

Moduli Set Multiplier Delay (ns) Del. Span
(29 − 1, 218, 29 + 1) 2.10, 2.55, 2.50 0.45
(28 − 1, 216, 28 + 1) 2.10, 2.40, 2.80 0.70
(29 − 1, 215, 29 + 1) 2.10, 2.20, 2.50 0.40
(28 − 1, 217, 28 + 1) 2.10, 2.45, 2.80 0.70

X1s X1c
X2s X2c X3s X3c

| + | 511 | + | 2 ^ 1 5 | + | 513

CSA (A) CSA (B)

CSA

2 ^ 1 8 - 1| + |

constants

X1
X2 X3

X2

X

Fig. 7. RNS-to-binary Converter

G. RNS-to-Binary (Reverse) Conversion

For the RNS-to-Binary converter, we employ the new Chinese Remainder Theorem-

I [45], similar to that in [46]. The New CRT-I states that, given a residue number

(x1, x2, ..., xn) for the moduli set (P1, P2, ..., Pn), the binary number X can be calculated

as follows:

X = x1 + P1 · |k1(x2 − x1) +
n−1∑
i=2

ki(
i∏

j=2

Pj)(xi+1 − xi)|∏n
j=2 Pj

(III.5)

where,



19

k1P1 ≡ |1|P2P3...Pn ,

k2P2P3 ≡ |1|P3...Pn , and

kn−1P1P2...Pn−1 ≡ |1|Pn .

The smallest ki satisfying the above congruences are chosen. For n = 3, we have,

X = x1 + P1 · |k1(x2 − x1) + k2P2(x3 − x2)|P2P3

For our moduli-set, we take P1 = 215, P2 = 29 + 1, P3 = 29 − 1 and correspondingly,

k1 = 23 and k2 = 22. Following a derivation similar to [46], we can calculate X as:

X = x2 + 215|A+B|218−1 (III.6)

where,

A = 23bx1+2(x2)+x3+29z0

2 c+ (23 − 1)

B = 212bx1+(x3)+(210−1)
2 c+ 24(23 − 1) + 22z0

and z0 = x30
⊕
x10, x30 and x10 are the LSBs of x3 and x1. Note that x1, x2 and x3 are

9-bit, 15-bit and 10-bit numbers respectively. Using CSA trees, and bit-alignment, we can

compute A and B.

The other terms of A and B are constants which are inserted at the correct bit posi-

tions. To compute |A+B|218−1 in Equation (III.6), we use two 18-bit Kogge-Stone adders

in parallel, one computing Y1 = A+B and other Y2 = A+B + 1. If Y1 generates a carry,

Y2 is the result of modulo addition, else it is Y1. Finally, since, x2 is a 15-bit number, it

can just be appended to the bits of the second term in Equation (III.6) to get X. The

organization is shown in Figure 7.



20

H. Synthesis Of RNS Units

The RNS functional units are implemented in Verilog and synthesized using the 0.18µ

OSU standard cell library with the Cadence Encounter R© RTL Compiler. The designs

were initially synthesized to achieve the lowest possible delay. Then timing constraints on

the various functional units were relaxed for power and area optimizations such that the

integral ratios were maintained for the delays. We also synthesized 2’s complement 32-bit

Brent-Kung adder and 32-bit multiplier whose structural HDL descriptions are provided

by ARITH project [15].

TABLE III

Synthesis Results

Arithmetic Unit Area (λ2) Power (mW) Delay (ns)
32-bit Brent-Kung Adder 11032 1.03 1.4

Modulo 29 − 1 Adder 2464 0.29 0.7
Modulo 215 Adder 3982 0.45 0.7

Modulo 29 + 1 Adder 5841 0.67 0.7
Total: Modulo Adders 12287 1.41 −

32-bit Multiplier 211927 48.52 4.2
Modulo 29 − 1 Multiplier 21647 4.97 2.8

Modulo 215 Multiplier 30850 7.13 2.8
Modulo 29 + 1 Multiplier 50915 11.95 2.8

Total: Modulo Multipliers 103412 24.05 −
Binary-to-residue 29 − 1 2287 0.26 0.7

Binary-to-residue 215 − − −
Binary-to-residue 29 + 1 5081 0.61 0.7

Total: Binary-to-residue 7388 0.87 −
Residue-to-binary 52382 11.60 2.8

From the results (Table III), we note that:

• RNS addition and multiplication are 2X and 1.5X faster than their 2’s complement

counterparts; and



21

• Power consumption of RNS multiplication is less than half of its 2’s complement

counterpart.

Hence we can design a binary-to-RNS conversion unit for single-cycle conversion of

two binary operands. Similarly, a single-cycle 3-operand RNS adder can be designed.

Multiplication and RNS-to-binary conversion are 2 cycle operations.

I. Processor Model

We integrate the functional units above into the pipeline of a typical RISC processor

as shown in Figure 8.

Multiplier

Adder

Forward

Converter

RNS Multiplier

RNS Adder

IF

EX

33-bit RNS Reg File/GP 

Floating Point Reg File

Integer Reg File

Reverse

ConverterID WB COM

Fig. 8. Typical RISC Pipeline with RNS Functional Units

I.1. Case Study: Matrix Multiplication

Computation in RNS can be beneficial if the program structure is such that there

are enough computation operations whose faster execution compensates for the conversion



22

overheads. For multiplication of two N×N matrices A and B, each cell of the result matrix

C is computed as follows:

Cij = Ai0 ·B0j +Ai1 ·B1j + · · ·+AiN ·BNj

The same row in matrix A is used in the computation of an entire row in the result matrix C,

and hence before computing row i of matrix C, we can forward-convert the corresponding

row of matrix A and store it. This avoids the repeated forward-conversion of a row in A

for computing every cell of the corresponding row in C. The computational requirements

of C = A×B are shown in Table IV

TABLE IV

Computational requirements for Matrix Multiplication

Operation Amount RNS Amount Normal Cycles RNS Cycles Normal
Loads (A) N2 N2 N2 N2

Loads (B) N3 N3 N3 N3

FC (A) N2

2 0 N2

2 0
FC (B) N3

2 0 N3

2 0
Mults N3 N3 2 ·N3 3 ·N3

Adds N3

2 N2(N − 1) N3

2 N2(N − 1)
RC N2 0 2 ·N2 0

Stores N2 N2 N2 N2

Therefore the normalized benefit is (CyclesRNS−CyclesNormal)
(CyclesNormal) = (N3−3.5N2)

(4N3+4.5N2)
, which is

positive for N ≥ 4, and 25% as N →∞. Thus we can see that in spite of overheads, RNS

computation has significant performance improvements over 2’s complement computation.

Although this analysis does not model the complexities of pipeline execution, it highlights

essential aspects of RNS computation.

An important observation from Table IV, is that the number (O(n3)) of forward con-

versions is an order of magnitude greater than that (O(n2)) of reverse conversions. So,



23

although reverse conversion is a costlier operation, forward conversion tends to have a

greater contribution to overhead due to its sheer volume.



IV. Compilation for Residue Number Extension

This chapter describes the basic compilation technique developed for mapping appli-

cation code to RNS instructions and also discusses improvements to it. Our goal is to

increase the number of computations that can be done in the RNS domain while reducing

the overhead of conversions.

A. Problem Definition

In order to define the problem of code mapping to RNS, we introduce certain defini-

tions.

Dataflow Graph (DFG) - is a graph G(V,E), where each vertex v ∈ V represents

a computation and each edge e = (u, v) ∈ E represents a dependency between u and v

where v consumes a value produced by u. We also define PRED(v) : u ∈ V/(u, v) ∈ E and

SUCC(v) : w ∈ V/(v, w) ∈ E.

RNS Eligible Node (REN) - For a DFG G(V,E), a node v ∈ V is an RNS Eligible

Node if the computation it represents is an addition, multiplication or subtraction of integer

values.

RNS Eligible Subgraph (RES) - For a DFG G(V,E), a subgraph GRES(VRES , ERES)

is called RNS Eligible if ∀v ∈ VRES , v is an RNS Eligible Node.

Maximal RNS Eligible Subgraph (MRES) - For a DFG G(V,E), an RNS Eligible Sub-

graph GRES(VRES , ERES) is Maximal if ∀v ∈ VRES , there does not exist any edge e = (u, v)

or e′ = (v, u), such that e is an RNS Eligible Node. A maximal RNS eligible subgraph

GMRES is profitable with respect to a metric M (power, cycle time, etc.), if mapping

GMRES to RNS instructions improves the metric M , when applied to GMRES .

With this, the RNS code mapping problem can be defined as follows:

Given a dataflow graph G(V,E), find out all profitable Maximal RNS Eligible Subgraphs



25

Each profitable MRES can be mapped to the RNS extension, with appropriate con-

version operations at its boundaries.

B. Basic Code Mapping Algorithm

B.1. Top Level Algorithm

The basic code mapping algorithm (Algorithm 1) takes as input the DFGs of all basic

blocks in the program and traverses each DFG to mark all MRESs. For each marked

MRES, it then estimates its profitability with respect to cycle time, using a profit model

that includes conversion overheads. Profitable MRESs are then mapped to utilize RNS-

specific instructions.

Algorithm 1 MAP2RNS
Require: Set SBB consisting of DFGs for every basic block
Ensure: All graphs in SBB, with all profitable MRESs mapped to RNS.

1: for all G ∈ SBB do
2: Do FIND MRES(G) [Algorithm 2]
3: for all MRESs, GMRES found in G do
4: profit ← ESTIMATE PROFIT(GMRES) [Algorithm 3]
5: if profit > 0 then
6: Transform GMRES to use RNS instructions.
7: end if
8: end for
9: end for

The operation is illustrated in Figure 9

B.2. Finding Maximal RNS Eligible Subgraphs

The algorithm FIND MRES (Algorithm 2), finds all Maximal RNS Eligible Subgraphs,

given the DFG of a basic block. An RNS Eligible Node in the basic block is picked as

the seed node and the MRES is grown by performing a breadth-first search ignoring the

direction of the edges.



26

a  =  C O M P U T E _ a ( )

b  =  C O M P U T E _ b ( )

fo r  i=0  t o  n  do :

  LOAD x[i]

  LOAD y[i]

  resul t  =  a*x[ i ]+b*y[ i ]  +  x[ i ]*y[ i ]

  STORE re su l t

a  =  C O M P U T E _ a ( )

b  =  C O M P U T E _ b ( )

fo r  i=0  t o  n  do :

  FC a_r ,  a

  FC b_r ,b

  LOAD x[i]

  LOAD y[i]

  FC x_r,x[i]

  FC y_r,y[i]

  r e su l t_ rns  =  a_r*x_r  +  b_r*y_r  +  x_r*y_r

  R C  r e s u l t _ r n s , r e s u l t

  STORE re su l t

* *

+

a bx[ i ] y [ i ]

result

MRES

* *

+

a bx[ i ] y [ i ]

MRES

RC

result

FCs

Basic Block

Basic Block

DFG

DFG

(a) (b)

(c)(d)

Fig. 9. Mapping to RNS

Theorem 1. Given a DFG G(V,E), algorithm FIND MRES finds all subgraphs of G that

are Maximal RNS Eligible Subgraphs.

Proof. We state and prove the following three statements:

The subgraphs FIND MRES marks are RNS Eligible Subgraphs

Lines 5-16 of FIND MRES are the same as a Breadth First Traversal (BFT) on an undi-

rected graph with vs as the starting node. Lines 10-12 ensure that only nodes that are

RNS Eligible Nodes are expanded in the BFT and only those are marked to be part of an

MRES at Line 11.

The RNS Eligible Subgraphs FIND MRES marks, are maximal.

Suppose that a RES GRES(VRES , ERES), that is a subgraph of the DFG G(V,E) of the

basic block, is not maximal. Then, ∃v ∈ VRES s.t. ∃u ∈ PRED(v)∪SUCC(v) s.t. u is an



27

Algorithm 2 FIND MRES

Require: G(V,E): DFG of basic block with nodes V and edges E.
Ensure: Graph G, with all MRESs marked.

1: Let Q be a queue of nodes.
2: MRES ID ← 1
3: while All nodes in V are not visited do
4: Pick an unvisited RNS Eligible node vs and add it to Q.
5: while Q is not empty do
6: v ← Node dequeued from Q.
7: for all u ∈ PRED(v) ∪ SUCC(v) do
8: if u is not visited then
9: Mark u as visited.

10: if u is RNS Eligible then
11: u.mres ← MRES ID
12: Add u to Q.
13: end if
14: end if
15: end for
16: end while
17: MRES ID ← MRES ID + 1
18: end while
19: Return G.

RNS Eligible Node, but u /∈ VRES .

Now, since v ∈ VRES , it must have been queued at Line 11 and eventually unqueued

at Line 6. There are two possibilities:

• u was already visited, in which case, it would also have been marked to be part of

RES at Line 11 (because u is RNS Eligible) in a previous iteration.

• u was not visited, in which case, it will now be marked to be part of the RES, since

it is RNS Eligible.

In both cases above, we find that u ∈ VRES , which is a contradiction from our original

premise. Therefore GRES is maximal.

All possible Maximal RNS Eligible Subgraphs are marked.

Suppose that there is an MRES GMRES(VMRES , EMRES) of G(V,E) that was unmarked by



28

FIND MRES. Since VMRES only contains RNS Eligible Nodes and since they are unmarked,

it means they are also not visited by FIND MRES. Since line 3-4 ensure that all unvisited

nodes are considered for seed nodes, GMRES can remain unmarked only if it were not a

subgraph of the original DFG, which is a contradiction. Thus all MRES that exist in the

DFG G, are marked.

B.3. Estimating Profitability Of A MRES

The algorithm ESTIMATE PROFIT estimates the profitability of RNS conversion of

an MRES GMRES(VMRES , EMRES), with respect to cycle-time. Since the RNS extension

includes a single-cycle 3-input addition of RNS operands, we can pair adds of the form

x + y + z and transform them into a single 3-input addition as shown in Figure 10. The

algorithm MARK ADD PAIRS, traverses the MRES and marks all eligible pairs of addi-

tions. Existence of any dataflow (u, v), such that u /∈ VMRES and v ∈ VMRES implies that

the value produced by u needs to be forward converted, while that of any dataflow (u′, v′),

such that u′ ∈ VMRES and v′ ∈ VMRES implies that the value produced by v′ needs to be

reverse converted. The following rules are applied to calculate the profit:

• Every pair of forward conversions is an overhead of 1 cycles.

• Every reverse conversion is an overhead of 2 cycles.

• Every 3-operand addition is a profit of 1 cycle.

• Every multiplication is a profit of 1 cycle.

C. Improvements Upon Basic Algorithm

C.1. Forward Conversions Within Loops

Consider the example shown in Figure 11(a). For sake of simplicity we ignore the prof-

itability of conversion and map the computation of result to RNS with the basic algorithm



29

a b

c
d e

f

+

+

+

+

+

a b

c

d e

f

+

+

+

+

3

x y

z x y z

+ 3

+

+

a) Basic Pairing Tranformation b) Pairing Example

Fig. 10. Pairing of Additions

a  =  C O M P U T E _ a ( )

b  =  C O M P U T E _ b ( )

fo r  i=0  t o  n  do :

  LOAD x[i]

  LOAD y[i]

  r e su l t  =  a*x[ i ]+b*y[ i ]

  STORE re su l t

a  =  C O M P U T E _ a ( )

b  =  C O M P U T E _ b ( )

fo r  i=0  t o  n  do :

  FC a_r ,  a

  FC b_r ,b

  LOAD x[i]

  LOAD y[i]

  FC x_r,x[i]

  FC y_r,y[i]

  r e su l t_ rns  =  a_ r*x_r  +  b_r*y_r

  R C  r e s u l t _ r n s , r e s u l t

  STORE re su l t

Basic Block
Basic Block

a ) b )

a  =  C O M P U T E _ a ( )

b  =  C O M P U T E _ b ( )

FC a_r ,a

FC b_r ,b

fo r  i=0  t o  n  do :

  LOAD x[i]

  LOAD y[i]

  FC x_r,x[i]

  FC y_r,y[i]

  r e su l t_ rns  =  a_ r*x_r  +  b_r*y_r

  R C  r e s u l t _ r n s , r e s u l t

  STORE re su l t

Basic Block

c)

Fig. 11. Moving Foward Conversions Out of Loops

(Figure 11(b)). Since the basic algorithm works purely at the basic block level, it inserts

the forward conversions of a and b within the basic block in which they are used. However,

since a and b are only written outside and not within the basic block, their forward conver-

sions can also be moved outside the basic block (Figure 11(c)). This prevents unnecessary

forward conversions at the boundaries of the basic block.

C.2. Improved Pairing Of Additions

The structure of addition expressions in the DFG constructed by the compiler is not

amenable for optimal pairing of additions. Ideally for an expression
∑

i=0..n ai, containing



30

a b c d e f g h

+

+ + + +

+

+

( (a+b )+ (c+d ) )+ ( (e+ f )+ (g+h ) )

Number of paired-adds = 2

( ( ( ( ( ( (a+b )+c )+d )+e )+ f )+g )+h )

Number of paired-adds = 3

+

+

+

+

+

+

+

a b

c

d

e

f

g

h

(a) (b)

Fig. 12. Linearizing Adds

n additions, the maximum number of add-pairs possible is bn2 c. Consider the DFG in

Figure 12(a). There are 7 additions and although ideally there should be 3 pairs (b72c), the

maximum pairs that can be formed for this organization of additions is 2. However, if we

make a linear structure of additions, as in Figure 12(b), then optimal pairing can be done.

We formalize these concepts below.

Addition Cluster - For a DFG G(V,E), a subgraph Gac(Vac, Eac) is an Addition Cluster

if the ∀v ∈ Vac, v is represents an integer addition. An add cluster is a DAG that represents

a series summation of integers.

Addition Tree - An Addition Tree, is an Addition Cluster which is a binary tree.

Fully Linear Addition Tree - A Fully Linear Addition Tree, representing an n additions

is an Addition Tree with n levels.

The algorithm LINEARIZE ADDS (Algorithm 5), an algorithm that converts an ad-

dition tree to a fully linear addition tree. The algorithm carries out the transformation

shown in Figure 13 repeatedly on the addition tree until it is fully linear.



31

u

l r

l

r

u

l_r

l_r

A B C D

A B

C

D

(A+B)+(C+D)

( (A+B)+C)+D

Fig. 13. Addition Linearizing Transformation

Theorem 2. LINEARIZE ADDS transforms a given addition tree Gat(Vat, Eat), repre-

senting n series additions, to a linearized addition tree.

Proof. Every single application of the transformation shown in Figure 13, increases the

number of levels in Gat by 1. Therefore, at the most n applications of the transformation

are required to transform it to a addition tree having n levels. This is, by definition, a

linearized addition tree.



32

Algorithm 3 ESTIMATE PROFIT

Require: G(V,E): DFG for basic block.
Require: GMRES(VMRES , EMRES): MRES to estimate profit for.
Require: cFC,cRC: Cycles that one forward and reverse conversion costs, respectively
Ensure: Estimated profit P on mapping GMRES to RNS.

1: Let nGain denote number of cycles saved by RNS mapping.
2: Let nOvhd denote the number of cycles spent on conversion overheads.
3: Let nFC denote number of forward conversions.
4: Let nRC denote number of reverse conversions.
5: Let P denote the estimated profit in cycle time.
6: nFC ← 0,nRC ← 0,P ← 0
7: MARK ADD PAIRS(GMRES) [Algorithm 4]
8: while there is atleast one unvisited node in VMRES do
9: Pick an unvisited node v ∈ VMRES

10: Mark v as visited.
11: for all nodes u ∈ V, (u, v) ∈ E && u /∈ VMRES do
12: nFC ← nFC + 1
13: end for
14: if ∃w ∈ V, (v, w) ∈ E && w /∈ VMRES then
15: nRC ← nRC + 1
16: end if
17: nOvhd← (nFC

2 + nFC mod 2) + 2× nRC
18: if v is an addition && (v, w) is a paired add for some w then
19: nGain← nGain+ 1
20: end if
21: if v is a multiplication then
22: nGain← nGain+ 1
23: end if
24: P ← nGain− nOvhd
25: end while
26: Return P .

Algorithm 4 MARK ADD PAIRS

Require: G(V,E): DFG for basic block.
Require: GMRES(VMRES , EMRES): MRES in which to mark add-pairs.
Ensure: All possible add-pairs in GMRES are marked.

1: for all nodes u ∈ VMRES that are not yet part of an add-pair do
2: if u is an addition then
3: if ∃v ∈ VMRES , s.t.(u, v) ∈ EMRES && v is an addition && @w ∈ V,w 6=

v, s.t.(u,w) ∈ E then
4: Mark the add-pair (u, v).
5: end if
6: end if
7: end for



33

Algorithm 5 LINEARIZE ADDS

Require: G(V,E): DFG for basic block.
Require: Gat(Vat, Eat): Addition Tree to linearize
Ensure: Gat is a Linearized Addition Tree.

1: whileGat contains an addition node u s.t. both its operands are also results of additions
do

2: l← Left predecessor of u, r ← Right predecessor of u, lr ← Left predecessor of r.
3: Let r ← Right predecessor of u.
4: Let lr ← Left predecessor of r.
5: Remove edges (r, u) and (rl, r).
6: Let S ← SUCC(u).
7: for all w ∈ S do
8: Remove edge (u,w).
9: end for

10: Add edge (lr, u) and (u, r).
11: for all w ∈ S do
12: Add edge (r, w).
13: end for
14: end while



V. Experimental Results

A. Simulation Model

Multiplier

Adder

Forward

Converter

RNS Multiplier

RNS Adder

IF

EX

33-bit RNS Reg File/GP 

Floating Point Reg File

Integer Reg File

Reverse

ConverterID WB COM

Fig. 14. Typical RISC Pipeline with RNS Functional Units

Using the synthesis results discussed in Section H (repeated in Table V for conve-

nience), we incorporate the RNS functional unit model in the SimpleScalar simulator [1].

The organization is shown in Figure 14. Delay and power of RNS functional units are

considered according to Table V. The simulation is run in an in-order execution as typical

for embedded microprocessors.

B. Benchmark Kernels

In order to evaluate our RNS extension and compiler extension we choose benchmark

kernels that represent core operations in a wide variety of digital signal processing, image

processing, graphics and multimedia algorithms. Convolution, 2D-Discrete Cosine Trans-

form (2D-DCT), matrix multiplication, finite impulse response (FIR), Gaussian Smoothing,



35

TABLE V

Synthesis Results

Arithmetic Unit Area (λ2) Power (mW) Delay (ns)
32-bit Brent-Kung Adder 11032\\11 1.03 1.4

Modulo 29 − 1 Adder 2464 0.29 0.7
Modulo 215 Adder 3982 0.45 0.7

Modulo 29 + 1 Adder 5841 0.67 0.7
Total: Modulo Adders 12287 1.41 −

32-bit Multiplier 211927 48.52 4.2
Modulo 29 − 1 Multiplier 21647 4.97 2.8

Modulo 215 Multiplier 30850 7.13 2.8
Modulo 29 + 1 Multiplier 50915 11.95 2.8

Total: Modulo Multipliers 103412 24.05 −
Binary-to-residue 29 − 1 2287 0.26 0.7

Binary-to-residue 215 − − −
Binary-to-residue 29 + 1 5081 0.61 0.7

Total: Binary-to-residue 7388 0.87 −
Residue-to-binary 52382 11.60 2.8

etc are central to these domains. Therefore, we use the following kernels as our benchmark

set to evaluate our RNS extension and compiler techniques.

• Matrix Multiplication

• Finite Impulse Response filter

• Gaussian Smoothing

• 2-dimensional Discrete Cosine Transform

• Livermore Loops - Hydro kernel

• Livermore Loops - Integrate Predictor kernel



36

0

10

20

30

40

50

60

M
at

m
u

l (
1

6
 

X
 1

6
)

FI
R

 (
1

6
-t

ap
)

G
au

ss
ia

n
 

Sm
o

o
th

in
g

2
D

 -
D

C
T

LL
-H

yd
ro

LL
-I

n
te

gr
at

e
 

P
re

d
ic

to
r

A
ve

ra
ge

%
 Im

p
ro

ve
m

e
n

t

Benchmark Evaluation Performance

Power

Fig. 15. Execution times for manually-optimized benchmarks

C. Simulation Results

C.1. Evaluation Of Manually Mapped Benchmarks

The above benchmarks are optimized manually to incorporate RNS computation in-

structions and conversion instructions as applicable. The simulator functional unit con-

figuration consists of 1 RNS adder, 1 RNS multiplier, 1 forward converter and 1 reverse

converter as well as 1 2’s complement adder and multiplier each. Simulation results (Fig-

ure 15) show an average performance improvement of 29.4%. Furthermore, power reduction

up to 57.03% (16× 16 matrix multiplication) and 51.6% in the average, can be obtained in

the functional units using RNS. This substantial power reduction is the direct result of the

lower power consumption seen in RNS functional units. While these are considerable power

savings, we acknowledge that the power consumption in arithmetic units is a small percent-



37

age of the total power consumption of a microprocessor. Hence these improvements might

not form a significant portion of total power consumption. Since several low power and

low cost embedded processors are typically employed in execution of applications having

these kernels at their core, the advantages of an RNS-equipped processor are immediately

obvious.

C.2. Evaluation Of Compiler Mapped Code

0

10

20

30

40

50

60

M
at

m
u

l (
1

6
 X

 1
6

)

FI
R

 (
1

6
-t

ap
)

G
au

ss
ia

n
 

Sm
o

o
th

in
g

2
D

 -
D

C
T

LL
-H

yd
ro

LL
-I

n
te

gr
at

e
 

P
re

d
ic

to
r

A
ve

ra
ge

%
 Im

p
ro

ve
m

e
n

t

Effectiveness of Compilation Technique
Hand Optimized

Basic Algorithm

Improved Algorithm

Fig. 16. Percentage improvement in execution times for compiler-optimized benchmarks

Next, we evaluate our compiler technique to see the performance and power benefits

obtained by automation of mapping. We compare the execution times of RNS-optimized

benchmarks with original benchmarks. To gauge the effectiveness of our compiler technique

we also compare performance with manually optimized benchmarks of Section C.1. While

hand-optimized code yields an average performance improvement of 29.4%, our basic tech-



38

nique achieves a 12.1% improvement as conversion overheads are not effectively managed.

The improved technique, with its better handling of conversion overheads and improved

pairing of additions, is able to achieve 20.7% performance improvement on average.

Note that there are no compiler-based simulation results for the LL-hydro benchmark.

This is because our profit model does not report a profit for that benchmark and hence no

mapping of code to RNS is done by the compiler.

C.3. Evaluation across design corners

1A, 1 M

2A, 1M

2A, 2M

2A, 4M

4A, 4M

1 RNS

15000

17000

19000

21000

23000

25000

27000

29000

31000

33000

20 30 40 50 60 70 80 90

Ex
e

cu
ti

o
n

 C
yc

le
s

Power

DCT - Power Vs Performance
ARM w/o RNS

ARM with RNS

Fig. 17. Power vs. Performance - DCT benchmark

We compare runtime vs power consumption of the RNS-equipped ARM processor

with processors having varying number of 2’s complement adders and multipliers. From

Figure 17, we see that the performance-to-power ratio for RNS-equipped ARM is quite

superior to those configurations having more adders and multipliers. This shows that



39

in normal processors, while increasing the number of functional units does translate into

improved performance, it comes at the cost of expending greater power. In contrast, RNS

is able to achieve significantly greater performance by utilizing lesser power owing to the

the presence of faster functional units and careful co-design. Also, in general, application

performance saturates as resources are increased, when existing instruction level parallelism

in the application is exhausted. RNS breaks this saturation barrier by exploiting parallelism

that the RNS representation inherently creates, resulting in the significant performance

improvements at the expense of much lower power.



VI. Conclusion and Future Work

In this work, we have demonstrated that by synergistic system design, it is possible to

overcome challenges of incorporating RNS arithmetic in embedded microprocessors. The

51.6% power and 29.4% performance improvements we obtain for several hand-optimized

DSP and image processing kernels, demonstrate that RNS arithmetic is not restricted

only to the domain of application specific non-programmable designs but also holds great

potential as an efficient computational platform in embedded RISC processors.

We also developed, what is to the best of our knowledge, the first compilation tech-

nique targeted towards exploiting the benefits of RNS computation in processors. Our

basic technique lends an average performance improvement of 12%. By improving the ba-

sic technique to amortize the overhead of forward conversions and to improve pairing of

additions, we realize an average performance improvement of 20.72%.

Interestingly, while in the application specific hardware the reverse conversion is con-

sidered to be the dominant bottleneck of RNS hardware and the overhead of inexpensive

and easy to parallelize forward conversions would typically be neglected, in a programmable

processor it is the forward conversions that are likely to limit the achievable speedup of

certain algorithms. While their parallel execution is limited by memory interface, with

limited size of register file, they are likely to outnumber reverse conversions by orders of

magnitude. While compiler techniques can be devised to hide the forward conversion laten-

cies, a possible exploration direction is to move them out of the processing pipeline — e.g.

into the cache memory between levels 1 and 2 or integrating them with loads and stores.

The compiler technique in this work can be extended in several aspects:

• Improve the profit model to model instruction execution more accurately.

• Extend analysis of programs to larger blocks of the program graph, i.e., at the hyper-



41

block or superblock level instead of just at the basic block level, so that subgraphs

containing more number of RNS operations can be mapped for greater performance

and power benefits.

• Explore the use of code annotation for improved program analysis. Language con-

structs can be introduced to guide the compiler in identifying blocks of code that can

be profitably mapped to RNS.



REFERENCES

[1] Simplescalar Simulator. http://www.simplescalar.com.

[2] J. Bajard and L. Imbert. A Full RNS Implementation of RSA. IEEE Transactions
On Computers, pages 769–774, 2004.

[3] D. Banerji. A novel implementation method for addition and subtraction in residue
number systems. Transactions on Computers, C-23(1):106–109, 1974.

[4] R. Brent and H. Kung. A regular layout for parallel adders. Transactions on Com-
puters, C-31(3):260–264, 1982.

[5] R. Chaves and L. Sousa. RDSP: A RISC DSP based on residue number system. Proc.
Euro. Symp. Digital System Design: Architectures, Methods, and Tools, pages 128–135,
Sep. 2003.

[6] R. Chaves and L. Sousa. Improving residue number system multiplication with more
balanced moduli sets and enhanced modular arithmetic structures. Computers &
Digital Techniques,IET, 1(5):472–480, Sept. 2007.

[7] C. Efstathiou, H. Vergos, and D. Nikolos. Fast Parallel-Prefix Modulo 2n + 1 Adders.
IEEE Transactions On Computers, pages 1211–1216, 2004.

[8] W. Freking and K. Parhi. Low-Power FIR Digital Filters Using Residue Arithmetic.
Proc. 31st Asilomar Conference on Signals, Systems, and Computers, 1:128–135, 1997.

[9] M. Griffin and F. Taylor. A Residue Number System Reduced Instruction Set Com-
puter (RISC) Concept. Proc. Inter. Conf. Acoustis, Speech, and Signal Processing,
pages 2581–2584, 1989.

[10] A. Hiasat. New memoryless, mod (2n ± 1) residue multiplier. Electronics Letters,
28(3):314–315, 1992.

[11] A. Hiasat. New Efficient Structure for a Modular Multiplier for RNS. IEEE Transac-
tions On Computers, pages 170–174, 2000.

[12] A. Hiasat. RNS arithmetic multiplier for medium and large moduli. Circuits and
Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also
Circuits and Systems II: Express Briefs, IEEE Transactions on], 47(9):937–940, 2000.

[13] A. Hiasat. High-Speed and Reduced-Area Modular Adder Structures for RNS. IEEE
Transactions On Computers, pages 84–89, 2002.



43

[14] R. Hohne and R. Siferd. A programmable high performance processor using the residue
number system and CMOS VLSI technology. Aerospace and Electronics Conference,
1989. NAECON 1989., Proceedings of the IEEE 1989 National, pages 41–43, 1989.

[15] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi. Formal Design of Arithmetic
Circuits Based on Arithmetic Description Language. IEICE Trans. Fundamentals,
E89-A:3500–3509, 2006.

[16] H.T.Vergos. A 200-MHz RNS Core. European Conference on Circuit Theory and
Design, August 2001.

[17] C. Huang, D. Peterson, H. Rauch, J. Teague, and D. Fraser. Implementation of a
fast digital processor using the residue number system. Circuits and Systems, IEEE
Transactions on, 28(1):32–38, 1981.

[18] W. Jenkins and B. Leon. The use of residue number systems in the design of fi-
nite impulse response digital filters. Circuits and Systems, IEEE Transactions on,
24(4):191–201, 1977.

[19] B. Kirsch, P. Turner, U. Center, and P. Warminster. Adaptive beamforming using
RNS arithmetic. Computer Arithmetic, 1993. Proceedings., 11th Symposium on, pages
36–43.

[20] P. Kogge and H. Stone. A parallel algorithm for the efficient solution of a general class
of recurrence equations. IEEE Transactions on Computers, 22(8):786–793, 1973.

[21] Y. Liu and E. Lai. Design and implementation of an RNS-based 2-D DWT processor.
Consumer Electronics, IEEE Transactions on, 50(1):376–385, 2004.

[22] H. Loomis and B. Sinha. High-speed recursive digital filter realization. Circuits,
Systems, and Signal Processing, 3(3):267–294, 1984.

[23] M.A.Soderstrand, W.K.Jenkins, G.A.Jullien, and F.J.Taylor. Residue number system
arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, Piscataway,
NJ, USA, 1986.

[24] D. Miller and J. Polky. An implementation of the LMS algorithm in the residue number
system. Circuits and Systems, IEEE Transactions on, 31(5):452–461, 1984.

[25] P. Mohan. Residue Number Systems: Algorithms and Architectures. Kluwer Academic
Publishers, Norwell, MA, 2002.



44

[26] P. Mohan. Residue Number Systems: Algorithms and Architectures. Kluwer Academic
Publishers, 2002.

[27] J. Ramirez, P. Fernandez, U. Meyer-Base, F. Taylor, A. Garcia, and A. Lloris. Index-
based rns dwt architectures for custom ic designs. Proc. IEEE Workshop on Signal
Processing Systems, pages 70–79, 26–28 Sept. 2001.

[28] J. Ramirez, A. Garcia, P. Fernandez, L. Parrilla, and A. Lloris. Implementation of
canonical and retimed rns architectures for the orthogonal 1-d dwt over fpl devices.
Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and
Computers, 1:384–388, 29 Oct.–1 Nov. 2000.

[29] J. Ramirez, A. Garcia, S. Lopez-Buedo, and A. Lloris. RNS-enabled digital signal
processor design. Electronics Letters, 38(6):266–268, 2002.

[30] J. Ramirez, A. Garcia, U. Meyer Base, F. Taylor, P. Fernandez, and A. Lloris. Design of
rns-based distributed arithmetic dwt filterbanks. Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’01), 2:1193–1196, 7–11 May
2001.

[31] J. Ramirez, A. Garcia, L. Parrilla, A. Lloris, and P. Fernandez. Implementation of rns
analysis and synthesis filter banks for the orthogonal discrete wavelet transform over
fpl devices. Proc. 43rd IEEE Midwest Symposium on Circuits and Systems, 3:1170–
1173, 8–11 Aug. 2000.

[32] D. Schinianakis, A. Kakarountas, and T. Stouraitis. A New Approach to Elliptic Curve
Cryptography: an RNS Architecture. IEEE Mediterranean electrotechnical conference,
Benalmádena (Málaga), Spain, pages 1241–5, 2006.

[33] N. Shanbhag and R. Siferd. A single-chip pipelined 2-D FIR filter using residue arith-
metic. Solid-State Circuits, IEEE Journal of, 26(5):796–805, 1991.

[34] S.J.Piestrak. Design of residue generators and multioperand modular adders using
carry-save adders. IEEE Transactions on Computers, 43(1):68–77, Jan 1994.

[35] M. Soderstrand. A high-speed low-cost recursive digital filter using residue number
arithmetic. Proceedings of the IEEE, 65(7):1065–1067, 1977.

[36] M. Soderstrand. A new hardware implementation of modulo adders for residue number
systems. IEEE Press Reprint Series, pages 72–75, 1986.



45

[37] M. Soderstrand and B. Sinha. A pipelined recursive residue number system digital
filter. Circuits and Systems, IEEE Transactions on, 31(4):415–417, 1984.

[38] F. Taylor. Large moduli multipliers for signal processing. Circuits and Systems, IEEE
Transactions on, 28(7):731–736, 1981.

[39] F. Taylor. A VLSI Residue Arithmetic Multiplier. IEEE Transactions on Computers,
31(6):540–546, 1982.

[40] F. Taylor. An overflow-free residue multiplier. IEEE Transactions On Computers,
32(5):501–504, 1983.

[41] T.Stouratitis and V.Paliouras. Considering the alternatives in lowpower design. IEEE
Circuits and Devices, pages 23–29, 2001.

[42] C. Wang. New bit-serial VLSI implementation of RNS FIR digital filters. Circuits
and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also
Circuits and Systems II: Express Briefs, IEEE Transactions on], 41(11):768–772, 1994.

[43] W. Wang, M. Swamy, M. Ahmad, and Y. Wang. The applications of the new chi-
nese remainder theorems for three moduli sets. Proc. IEEE Canadian Conference on
Electrical and Computer Engineering, 1:571–576 vol.1, 1999.

[44] Y. Wang. New chinese remainder theorems. Conference Record of the Thirty-Second
Asilomar Conference on Signals, Systems & Computers, 1:165–171 vol.1, 1998.

[45] Y. Wang. Residue-to-binary converters based on new chinese remainder theorems.
47(3):197–205, 2000.

[46] Y. Wang, X. Song, M. Aboulhamid, and H. Shen. Adder based residue to binary
number converters for (2n − 1, 2n, 2n + 1). 50(7):1772–1779, 2002.

[47] W.K.Jenkins and B.J.Leon. The use of residue number systems in the design of finite
impulse response digital filters. IEEE Trans. Circuits Syst, CAS-24:191–201, 1977.

[48] R. Zimmermann. Efficient VLSI implementation of modulo (2n ± 1) addition and
multiplication. Proceedings of the 14th IEEE Symposium on Computer Arithmetic,
pages 158–167, 1999.


