
Reducing Code Management Overhead in
Software-Managed Multicores

Jian Cai∗, Yooseong Kim∗, Youngbin Kim†, Aviral Shrivastava∗, Kyoungwoo Lee†
∗Compiler-Microarchitecture Lab, Arizona State University, Tempe, AZ

{jian.cai,yooseong.kim,aviral.shrivastava}@asu.edu
†Department of Computer Science, Yonsei University, Seoul, Korea

{yb.kim,kyoungwoo.lee}@yonsei.ac.kr

Abstract—Software-managed architectures, which use scratch-
pad memories (SPMs), are a promising alternative to cached-
based architectures for multicores. SPMs provide scalability but
require explicit management. For example, to use an instruction
SPM, explicit management code needs to be inserted around
every call site to load functions to the SPM. such management
code would check the state of the SPM and perform loading
operations if necessary, which can cause considerable overhead
at runtime. In this paper, we propose a compiler-based approach
to reduce this overhead by identifying management code that
can be removed or simplified. Our experiments with various
benchmarks show that our approach reduces the execution time
by 14% on average. In addition, compared to hardware caching,
using our approach on an SPM-based architecture can reduce
the execution times of the benchmarks by up to 15%.

I. INTRODUCTION

Using scratchpad memories (SPMs) instead of caches can
considerably reduce power and area overhead [1]. The sim-
plified hardware, however, shifts the work of memory man-
agement from hardware to software and requires executing
additional management instructions in software. Multicore
architectures based on SPMs are, therefore, called software-
managed multicore (SMM) architectures, where each core has
its local SPM. Instructions or data can be transferred into an
SPM by direct memory access (DMA) operations.

One way to manage instructions on an SPM is overlay-
ing [2]. Overlaying divides SPM space into different regions,
with each function allocated to one of the region. Before every
function call, a management function must be called to check
the SPM state to see if the called function is loaded in the
SPM and if not, performs a DMA operation. Similarly, the
management function needs to be called again right before the
called function returns back to the caller, because the caller
function might have been evicted by the called function, in
case they share the SPM space.

There are two sources of overhead in such code man-
agement. The long-latency DMA operations are one source
of overhead. The SPM allocation determines the memory
space sharing among functions, and a poor allocation scheme
can increase the overhead of DMA operations by causing
frequent reloading of functions. Another source of overhead,
which is of our interest in this paper, comes with calling
the management function at every call site. This can cause a
noticeable overhead as merely checking the SPM state involves

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

No
rm

al
ize

d	
Dy

na
m
ic	

In
st
ru
ct
io
n	
Co
un
ts

Management	 overhead Original	program	without	code	mangement	

Fig. 1: The overhead of management function calls is mani-
fested as the increase in the dynamic instruction counts.

multiple table lookups to obtain the information about the
called function (address, size, load status, etc.). If loading the
called function turns out to be indeed required, there will be
additional overhead for updating the SPM state.

Most previous overlaying-based code management ap-
proaches are focused on the first overhead regarding DMA
operations; they try to find memory allocation schemes that
can minimize function reloadings [3], [4], [5], [6], [7]. For
example, allocating a caller and a called function in a loop to
non-overlapping memory ranges eliminates the competition for
SPM space between them. Kim et al. [8] proposed a technique
to split functions into smaller partitions to facilitate finding
efficient allocation schemes. These approaches, however, do
not address the second overhead (regarding management over-
head) and blindly insert management function calls to every
call site even though some of them may not be necessary.
For instance, even if a function is loaded into its private
space in the SPM, a management function has to be called
every time the function is called, only to find out that the
function is already loaded in the SPM. Figure 1 shows such
overhead of executing code management instructions in vain.
It shows that over a set of typical embedded applications [9],
18% of executed instructions on average are from management
functions. Note that this is the lower bounds of the overhead
when the SPM size is large enough to assign a private region to
every function. For smaller SPM sizes, the number of loading
operations will increase as the conflicts between functions
increases, thus the overhead of executing management instruc-
tions will also increase.

In this paper, we propose a compiler-based approach to
reduce the overhead of management function calls. Given the
allocation of functions to the SPM, our analysis statically



r0:	main
r1:	F1,F3
r2:	F0,	F2

_get(F1)
call	F1

_get(main)

_get(F0)
call	F0

_get(main)

_get(F2)
call	F2

_get(main)

_get(F3)
call	F3

_get(main)

_get(F0)
call	F0

_get(main)

call	F1

_get(F0)
call	F0

_get(F2)
call	F2

_get(F3)
call	F3

_get(F0)
call	F0
_get(F1)

(a)	Before	our	approach (b)	After	our	approach

overlaying

Fig. 2: Removing unnecessary management function calls.

determines whether a function can be safely assumed to be
loaded before each call site, and whether the caller is always
loaded after the call site. If a function is guaranteed to be
already loaded at a call site, we label the call site as always-
hit and do not insert a management function call. Similarly, a
call site in a loop is labeled as first-miss, if the called function
cannot be guaranteed to be always loaded but once loaded, is
never evicted until the end of the loop. In this case, we hoist
the management function call to the loop preheader so that it
is executed only once before the loop.

The static instruction cache analysis based on abstract inter-
pretation [10], [11] also tries to identify always-hit and first-
miss cache lines. However, within nested loops, their first-miss
analysis [11] is only able to identify cache lines that are first-
miss in the outermost loop. On the other hand, our first-miss
analysis can identify any first-miss call site including those that
are first-miss only within inner loops. In addition, our solution
consists of two steps: i) static analysis for finding always-hits
and first-misses; ii) inserting management function calls based
on the analysis result. The cache analysis techniques only deal
with the first part and cannot be directly used for reducing
overhead of code management on SPM.

For evaluation, we use the state-of-the-art function alloca-
tion technique [7], and various benchmarks from Mibench
suite [9], with varying SPM sizes. The results show that
our approach reduces execution time by 14% on average. In
addition, our approach reduces the execution time by 9% on
average and up to 15% compared to hardware caching, even
with conservative measurement.

II. MOTIVATING EXAMPLE

Figure 2 shows that current code management techniques
may insert unnecessary management function calls, and how
we can avoid them. The code management function, referred
as _get in the rest of our discussion, is inserted around
each function call. The _get function checks if the required
function is currently in the region it is allocated to. If not, it
loads the function into the SPM. The SPM space is divided

into three regions r0, r1 and r2. Functions are allocated
to the regions respectively as follow: {main}, {F1,F3},
{F0,F2}. Previous code management approaches insert code
management functions around every function call as in Fig-
ure 2(a). In contrast, our analyses enables us to remove some
of the management function calls as shown in Figure 2(b). For
example, throughout the execution, main will never be evicted
since it is the only function mapped to r0, so none of the calls
of _get(main) after each function call is necessary. Also,
since we know F1 is the only function called within the loop
in region r1, it will not be evicted after it is loaded into the
region for the first time. On the other hand, the _get function
called before each call to F0 and F2 in the loop are required,
since the exact order of execution is not know at compile-time,
so we have to conservatively assume either of them may be
evicted in previous iterations from r2.

III. OUR APPROACH

The flow of our approach is as follows: the compiler takes as
input a program, and generates a control flow graph (CFG) for
each function. All the CFGs, as well as the mapping between
functions and regions, are then fed as input to our analyses.
The output of our analyses are as follow: i) before each
function call, whether the called function is always-hit/first-
miss; ii) after the function call, whether the caller function
is always-hit/first-miss. The result is then used to insert only
necessary management function calls accordingly.

Our analyses are a type of classic forward iterative data-flow
analyses. The always-hit analysis is performed on the CFG
of a whole program whereas the first-hit analysis is done on
each individual loop. We associate a data-flow value with each
program point before and after each statement respectively.
A data-flow value records the current state of each SPM
region. If a statement is a function call, we save an additional
intermediate state that records the SPM state right before the
call returns (so we can know if the caller has been evicted and
needs to be brought back). Whenever a function call happens,
the called function replaces the existing function in the region
in which the called function is allocated. Thus, at any time,
there is only one function in each region of a data-flow value.
When we have to combine data-flow values from multiple
paths, we perform a join operation based on a meet operator,
defined later for each analysis. Like any other iterative data-
flow analyses, the analysis stops when SPM states are no
longer updated.

A. Always-hit Analysis

We explain always-hit analysis with an example shown in
Figure 3. The output/input SPM state of the incoming/outgoing
basic block is shown in each edge. The intermediate SPM
states right before function calls return are not shown, since
they are easy to figure out based on other states. The prefix f
denotes the states in the first iteration, o denotes the states in
the rest of iterations, and f/o when they are the same. In the
first iteration, we ignore the data-flow value from back edges,
since the source of a back edge has not been visited when the



call	F1

call	F0

f/o:{main},{},{}

f/o:{main},{F1},{F0}

f/o:{main},{},{F0}
f/o:{main},{},{F0}

f/o:{main},{F1},{F0}

r0:	main
r1:	F1
r2:	F0,	F2

overlaying

main	

call	F1

call	F0
f/o:{main},{},{F0}

f/o:{main},{},{F0}

f/o:{main},{},{F0}

f/o:{main},{},{F0} f/o:{main},{},{F0}

Fig. 3: Always-hit analysis in the main function.

destination is accessed, and the value is meaningless anyway.
Initially only main is in the SPM. For simplicity, we assume
none of F0, F1 and F2 calls any other functions.

When a basic block has multiple predecessors, all incoming
states are joined to obtain the input SPM state to the basic
block. The meet operator is defined as

⋃ah
(ss1, ss2) =

{
ri ← ss1(ri) if ss1(ri) = ss2(ri)

ri ← null otherwise,

where ss1 and ss2 are the two SPM states to join, ri denotes
the state of the i-th region, and ss1(ri) and ss2(ri) represent
the i-th region states in the two incoming SPM states respec-
tively. This operator ensures that in the resulting SPM state,
the only functions left are those have been loaded and never
evicted in all possible paths leading to the program point. For
example,

⋃ah
({{main}, {F1}, {F0}}, {{main}, {}, {F0}})

would be evaluated as {{main}, {}, {F0}}.
In the example, the second call to F0 (after the loop) is

always-hit, since F0 is in r2 of the input SPM state of the basic
block. We do not need to insert _get(F0) there. Similarly,
_get(main) after every call can be skipped.

B. First-miss Analysis

We explain first-hit analysis with an example shown in
Figure 4, in the outer loop L2 in main. Again, we assume
F0, F1 and F2 do not have any function calls. The output
state of the back edge of L2 (initially empty) is used as the
input of its header at the beginning of each iteration. Since L2
must be executed within its parent function, main must have
been brought into the SPM. Therefore, the input SPM state of
the loop head is {main}, {}, {}. When entering the inner
loop L1, the output of its back edge is ignored, as the eviction
of any function will anyway be reflected in the output of its
exit edge (from call F2 to call F0).

call	F1

call	F2

call	F0

f:{main},{F1},{}

f:{main},{},{}
o:{main},{F1},{F0}

f:{main},{},{}
o:{main},{F1},{F0}

f/o:{main},{F1},{F2}

main	

f:{main},{},{}

f:{main},{},{}

f:/o:{main},{F1},{F0}

o:{main},{F1},{F0}

o:{main},{F1},{F0} o:{main},{F1},{F0}

r0:	main
r1:	F1
r2:	F0,	F2

L2
L1

overlaying

Fig. 4: First-miss analysis in loop L2 of the main function.

The meet operator in the first-miss analysis is defined as

⋃fm
(ss1, ss2) =


ri ← ss1(ri) if ss1(ri) = ss2(ri)

ri ← ss1(ri) if ss2(ri) = NULL

ri ← ss2(ri) if ss1(ri) = NULL

ri ← null otherwise.

This ensures that only the functions that would never be
evicted after their initial loadings are left. For example,⋃fm

({{main}, {F1}, {F0}}, {{main}, {F1}, {}}) would
be evaluated as {{main}, {F1}, {F0}}.

The call to F1 is first-miss in L2, since F1 is in r1 of the
input SPM state of the call statement. Notice that our first-
miss analysis is done loop by loop, so while the call to F2 is
not classified as first-miss in L2, it will be, in the first-miss
analysis for L1. On the other hand, the first-miss analysis in
static cache analysis [11] is done for all loops at once. As a
result, it is not able to identify the call to F2 in the above
example as first-miss, as the analysis would find out that F2
will be evicted in the outer loop L2 by F0.

IV. EVALUATION

A. Experimental setup

We apply our analyses to CMSM [7], the state-of-the-art
function-level code management technique, to see how much
of the overhead we can reduce. We implemented both analyses
as transformation passes in an LLVM compiler [12] and com-
piled benchmarks from Mibench [9] with the passes enabled.
Then, we collected performance statistics gem5 simulator [13].
We modeled an SPM in gem5 and also implemented DMA
operations. The cost of a DMA transfer consists of setup time
and transfer time. The setup time is set to 91 nanoseconds
(about 291 CPU cycles), and the data transfer time is set to
0.075 nanoseconds per byte (0.24 CPU cycles) for each byte
of data. These specs are borrowed from IBM Cell BE [14].



0%
10%
20%
30%
40%

Re
du

ct
io
n	
in
	

Ex
ec
ut
io
n	
Ti
m
e

Fig. 5: By reducing management overhead, the execution times
are reduced by over 14% on average.

B. Code Management Overhead Reduction

Figure 5 shows the reduction in execution time after using
our approach. The number of regions is set to be the half of the
number of functions in each benchmark. This choice demon-
strates the average-case performance between two extremes:
i) the SPM space is so restrictive that all functions have to be
mapped to one region, and ii) the SPM space is so large that
each function can be placed in a separate region. On average,
the execution time is reduced by more than 14%.

Benchmarks that receive insignificant overall performance
improvement, such as adpcm.dec and adpcm.enc, have
only a few function calls, so the overhead of code man-
agement was already negligible before our approach. For
stringsearch, while it has many function calls, it has only
three functions, with the main function calling the other two
in a loop. Since there are only two regions, two of the three
functions have to be mapped to one region, causing them to
evict each other at every iteration. The management overhead
are necessary and cannot be reduced.

C. Comparison with Hardware Caching

We compare our approach with caching in a cache-based ar-
chitecture. The cache-based system has a 2-way L1 instruction
cache with 64-byte cache lines on gem5 simulator. The sizes
of the SPM are the same as the experiments in section IV-B.
Cache size for each benchmark is set to the smallest power
of two that is no less than the SPM size. Cache miss latency
is the same as the DMA setup time. This configuration is
conservative since it leads to significantly larger cache sizes
than SPM sizes in several benchmarks, sha, IFFT, FFT,
adpcm.dec and adpcm.enc.

Figure 6 shows the normalized execution time of bench-
marks with our approach compared to hardware caching. The
overhead of code management in a cache-based architecture
is measured as the number of cache misses times the cache
miss penalty, while the overhead in the SMM architecture is
measured as the sum of the time spent executing instructions
of code management function calls and DMA cost.

In several benchmarks, using an SPM-based architecture
with our approach can significantly reduce the execution time.
However, caching is better in adpcm.dec and adpcm.enc,
in which most of the execution time is spent on small loops
that are small enough to fit in the instruction cache. However,
even in these cases, the execution times are comparable, and
the differences are not more than 6%.

0
0.2
0.4
0.6
0.8
1

1.2

N
or
m
al
ize

d	
Ex
ec
ut
io
n	
Ti
m
e	

Fig. 6: Execution times normalized to those with hardware
caching. Using our approach leads to better or at least com-
parable performance to hardware caching.

V. CONCLUSION

In the context of managing code blocks in SPMs, we pro-
pose two analyses that find the locations where the outcomes
of checking can be safely guaranteed. Based on the analysis
results, we can safely remove or hoist the management code
to reduce the overhead associated with the management. With
various benchmarks and various memory configurations, our
experimental results show that our techniques can reduce the
execution time by 14% on average. Using our approach on an
SPM-based architecture, we observe that the execution times
of benchmarks are significantly less or at least comparable to
those on a cache-based architecture.

REFERENCES

[1] B. Redd, S. Kellis, N. Gaskin, and R. Brown, “The Impact of Process
Scaling on Scratchpad Memory Energy Savings,” Journal of Low Power
Electronics and Applications, vol. 4, no. 3, p. 231, 2014. [Online].
Available: http://www.mdpi.com/2079-9268/4/3/231

[2] J. R. Levine, Linkers and Loaders. Morgan Kaufmann Publishers Inc.,
1999.

[3] M. A. Baker, A. Panda, N. Ghadge, A. Kadne, and K. S. Chatha, “A
performance model and code overlay generator for scratchpad enhanced
embedded processors,” in Proc. of CODES+ISSS, 2010.

[4] C. Jang, J. Lee, B. Egger, and S. Ryu, “Automatic Code Overlay
Generation and Partially Redundant Code Fetch Elimination,” ACM
Trans. Archit. Code Optim., vol. 9, 2012.

[5] K. Bai, J. Lu, A. Shrivastava, and B. Holton, “CMSM: An Efficient
and Effective Code Management for Software Managed Multicores,” in
Proc. of CODES+ISSS, 2013.

[6] Y. Kim, D. Broman, J. Cai, and A. Shrivastava, “WCET-aware Dynamic
Code Management on Scratchpads for Software-Managed Multicores,”
in Proc. of RTAS, 2014.

[7] J. Lu, K. Bai, and A. Shrivastava, “Efficient Code Assignment Tech-
niques for Local Memory on Software Managed Multicores,” ACM
Trans. Embed. Comput. Syst., vol. 14, 2015.

[8] Y. Kim, J. Cai, Y. Kim, K. Lee, and A. Shrivastava, “Splitting Functions
in Code Management on Scratchpad Memories,” in Proc. of ICCAD,
2016.

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. of IWCC, 2001.

[10] C. Ferdinand and R. Wilhelm, “Efficient and Precise Cache Behavior
Prediction for Real-TimeSystems,” Real-Time Syst., vol. 17, 1999.

[11] C. Cullmann, “Cache persistence analysis: Theory and practice,” ACM
Trans. Embed. Comput. Syst., vol. 12, 2013.

[12] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proc. of CGO, 2004.

[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” SIGARCH Comput. Archit. News, vol. 39, 2011.

[14] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor communi-
cation network: Built for speed,” IEEE Micro, 2006.


