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Abstract—The design complexity and power consumption
of hardware cache coherence logic increase considerably with
the increase in number of cores. Although skipping coherence
can simplify hardware and make it more power-efficient,
programming becomes more challenging as programmers have
to manually insert DMA instructions to ensure that there is
coherence of shared data between cores. To reduce the burden
of parallel programming, we propose program transformations
and a runtime library that will enable correct execution of
data-race-free multi-threaded programs. Our scheme manages
coherence at byte granularity rather than conventional page-
granularity. We further optimize the performance by intro-
ducing the concept of private write notice for each core and
combining write notices in our coherence implementation.
Experimental results of running multi-threaded signal pro-
cessing benchmarks on the 8-core non-cache coherent Texas
Instruments processor TMS320C6678 demonstrates that our
technique achieves 12X performance improvement over naive
scheme of disabling caches, and 2X performance improvement
over the state-of-art technique.
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Memory, Multi-core Processor, Software Managed Multicores

I. INTRODUCTION

Multi-core processors are now common in embedded
systems, as single-cores cannot deliver the power-efficiency
(MIPS per watt) required for embedded applications. How-
ever, it is becoming harder to scale the memory subsys-
tem, since the area and power overhead of implementing
cache coherence increases dramatically with the number of
cores [1]–[4]. As a result, embedded processors (and also
general purpose processors) at larger core count are looking
to avoid implementing coherence in hardware. For example
the latest 8-core TI TMS320C6678 processor features a
non-coherent cache memory architecture, or in the more
general purpose domain, the 48-core Intel SCC [5] has
non-coherent cache memory architecture. Although a Non-
Coherent Cache (NCC) architecture simplifies hardware
design and improves power-efficiency and scalability of the
architecture, it requires explicit DMA instructions to ensure
the coherence of shared data when developing parallel
programs. This problem is illustrated in Figure 1. Without
explicit communication, modifications of shared data will
not be propagated properly and cause unexpected problems.

There has been quite a lot of research on coherence
management of shared data in multiprocessing environ-

Figure 1: Coherence of data has to be managed explicitly
on a Non-coherent Cache (NCC) multi-core architecture.
Suppose physical memory location x initially contains value
0 and both cores P0 and P1 caches it. If P0 writes a new
value 5 at address x, P1 will still stay uninformed and access
the stale value.

ment [6]–[8]. Most previous work maintains coherence of
shared data are fixed granularity, either at block level [9]
or page level [10], [11]. Typical approaches either rely on
hardware such as Memory Management Unit’s page fault
handler to identify writes to shared pages and invalidate
its copies in all other cores [7], [10], [11], or develop
software to manage the modifications on each core and
do compute-intensive comparisons between the original and
the modified copy to apply the change [12]. We do not
consider the hardware approaches in this paper since modern
multi-cores are usually designed without complex hardware
to save power. But even with the software approach, a
fixed granularity approach may not be the best option for
NCC architectures—such approaches usually require much
computation power. For example, in the presence of multiple
writers to the same shared page, each writing core needs to
create and modify its local copy, and compare the modified
copy to the original copy in order to apply changes to the
original copy [12]. In traditional multi-processor systems
with computationally strong processors and relatively slow
inter-process communications, such approaches that increase
computation to avoid more expensive communication makes
sense. However, in modern multi-core systems, each core
is designed with relatively weak computational power to
preserve power efficiency, yet with much faster communi-
cation speed. For example, the theoretical peak performance
of an accelerator core on the Cell processor is around 20
GFLOPS [13], while that of a conventional Xeon processor
reaches up to 600 GFLOPS [14]. Therefore, we need to



come up with a customized solution to adapt the changes.
In this paper, we propose a pure software approach at byte

granularity on NCC architectures to manage coherence of
shared data among cores while reducing the computational
overhead caused by the management. Our approach achieves
almost 12X performance improvement compared to a naive
way of running parallel programs by disabling caches,
and more than 2X performance improvement compared to
the state-of-art software approach, on non-coherent cache
architectures [12] on the new 8-core non-cache coherent TI
TMS320C6678 processor [15]. Experiments also show that
the performance overhead of managing coherency via our
approach is more manageable than [12].

II. RELATED WORK

Maintaining coherence of shared data has been a heav-
ily studied topic for multi-processor systems, e.g., cluster
computing, grid computing, and distributed computing, in
an effort to provide a Distributed Shared Memory (DSM)
to applications [16]. A DSM creates an illusion of shared
memory over a distributed memory system, e.g., a multi-
processor system. DSM is in general a software-based
approach to manage data coherence between processors.
A compendium of many important approaches to provide
coherence among the processors of a multi-processor system
can be found in [17]. DSMs are closely related to software
cache coherence as both try to provide a single image of
memory to all processors. Most software DSMs use page-
grain coherence management [18]. When the page-grain
DSM is implemented by modifying page-fault handler, it
is also called Software Virtual Memory, or SVM. All these
coarse-grain approaches aim to reduce the communication
between processors, even if it results in a slight increase in
the computation required.

Although page-grain coherence management reduces
communication, it is prone to false sharing. To avoid the
adverse effects of false sharing on the performance, some
researches propose to manage coherence at variable granu-
larity. Carter et al. [10] introduced a method of managing
coherence at size of the data items, through user-defined
association between synchronization objects and data items.
Their approach relies on Memory Management Unit (MMU)
trapping page faults, Scales et al. [9] transparently rewrite
the application executable to intercept loads and stores in
compiler. Sandhu et. al. [19] introduced a program-level
abstraction called shared region, and users explicitly call
a function that binds a shared region to a set of memory
locations with variable sizes, and access shared regions via
some provided functions which will guarantee the synchro-
nization of different processors. Bershad et. al. [11] also pro-
vides variable granularity coherence management by asking
users to explicitly associate data items and synchronization
objects.

Figure 2: The way COMIC works.

More recently, providing coherence and consistency in
multi-cores has become a more important subject of re-
search. Several hardware based schemes have been proposed
to assist in coherence implementation, and make it more
efficient. A recent proposal from Zhao et al. [20] proposes
two adaptive cache coherence schemes. The first scheme
supports adaptive granularity of storage but fixed cache line
size, while the other supports both adaptive granularity of
storage and cache line size. Ophelders et al. [21] proposed a
hardware-software hybrid scheme which places private data
in write-back cacheable memory regions and shared data
in write-through cacheable memory regions. While these
approaches attempt fine-grain coherence management, they
are implemented by introducing new hardware, while we are
looking for a software based solution for architectures that
do not implement coherence through hardware.

Among the software approaches, Kim et. al. [22] proposed
a software shared virtual memory for the Intel SCC [5]—a
non-coherent cache architecture. Their approach requires
modification of page-fault handler and manages coherence at
page granularity. However, several NCC multi-core architec-
tures including the TI TMS320C6678 do not have a MMU
for each core, therefore page-fault handler based schemes
are not applicable for several embedded NCC architectures.
The work most closely related to our work is COMIC
[12]. It is a pure software approach designed for multi-
core processors without hardware cache coherence [23] and
MMU in each core. In the experiments section, we will
compare the performance of COMIC with our approach. We
describe COMIC in more detail in the next section.

III. PREVIOUS APPROACH

COMIC [12] proposes a software approach which imple-
ments Release Consistency model [24] at page granularity.
Release Consistency consists of two special operations:
acquire and release. The program execution between acquire
and release is called interval. All memory accesses after an
acquire operation should be performed only after the acquire
operation has been performed while all memory accesses
before a release operation must have been performed by the



Figure 3: The way our approach works.

time when the release operation is performed. Acquire and
release operation are performed in program order.

Figure 2 illustrates how COMIC works. It requires one
core to act as coherence manager, which is the only pro-
cessing element that can directly access the main memory.
All the other cores have to make memory requests via
coherence manager. In addition, whenever write requests
to a shared page arrive, the coherence manager creates a
copy of the page (termed twin), and sends the page to all
requesting cores. When the cores are done changing the
page, they send back the modified pages, and coherence
manager finds out the changes of each core by comparing
the unmodified twin to the modified pages, then only applies
the changes to the original page in the main memory. Both
the centralized management and compute-intensive page
comparison contribute to high computational overhead on
coherence manager and throttle the overall performance of
system.

IV. OUR APPROACH

Our approach implements Release Consistency model
at byte granularity. Figure 3 shows an overview of our
approach. Whenever a core wants to modified shared data,
it first performs an acquire operation. Upon its success, the
core creates a private duplicate in main memory and all the
subsequent writes go to the duplicate. All writes during the
interval are recorded in write notices. Each write notice is
a record that saves the the memory location and the bytes
modified. On the release operation, the core makes all the
write notices visible to other cores by pushing them back to
the main memory, together with modification recorded. The
subsequent acquiring core can then read the write notices
from the main memory and either update or invalidate its
local copy of modified data.

A. Code Transformation

We implement our own synchronization primitives. Figure
4 shows an example of how the code will be changed with
our management functions. The lock performs an acquire
operation once the exclusiveness to the critical region is

Figure 4: Code transformation with our management func-
tions. Figure (a) shows the snippet of original code. Figure
(b) shows the transformed code.

obtained, while the unlock function performs a release op-
eration and releases the lock. The write notice add function
records the start address and size of the modification.

B. Fine-Grain Coherence via Write-Notice

Write notice is the key component in implementing re-
lease consistency model, and the content of a write notice
determines coherence granularity. For example, in traditional
page-grain coherence scheme, e.g., COMIC, a write notice
will mark which page is updated but not where exactly the
page is modified. So whenever any coherence operation (e.g.,
acquire and release) happens, it either invalidates or updates
the entire page, which usually causes unnecessary data
transfer. Our coherence scheme works at byte granularity,
assuming that no more than one processing elements should
access different bits on the same byte simultaneously. In our
approach, a write notice records the beginning address and
the exact size of the memory locations. By doing so, a core
only needs to write back the exact modified part of shared
data at the release operation. For example, if a core modified
only one word in a cache block, it will write only that word
instead of flushing the whole cache line.

C. Reduced Computation Overhead

Compared to communication pattern of COMIC (Figure
2), our approach (Figure 3) writes back the exact modified
bytes to main memory instead of pages. As a result, when
the modified data is written back to main memory, no
comparison is needed to figure out the modification. Also,
the duplicate and write notices are created by each acquiring
core, but not by the coherence manager as in COMIC.
By doing so, we avoid compute-intensive tasks of creating
twins, comparing different copies of the same page and
applying the difference. Moreover, it also distributes the load
to multiple cores and mitigates the throttle of a centralized
manager.

D. Further Optimizations

To further reduce the runtime overhead of our approach,
we propose two more ways of optimization. The first opti-
mization aims to reduce the contention to memory locations
if multiple cores are trying to create write notices at the
same time, while the second one tries to reduce the number
of write notices.



Figure 5: Comparison of the performance of our approach
and COMIC.

1) Private Write Notices: Two types of write notices
are used in our design - private write notices and global
write notices. Private write notices record modifications by
a specific core during an interval, while global write notices
keep records of all modifications from all cores. When a core
works on an interval, it works on its private write notices.
Private write notices will be merged with global write notices
at the release operation. Global write notices can be accessed
by any core. During acquire operation, modifications done
by other cores can thereby be propagated to the subsequent
core.1 With private write notice, we can avoid creating
performance bottleneck caused by centralization.

2) Merging Write Notices: Less number of write notices
should reduce the number of inquiries and DMA transfers
on acquire operation, while a core goes through all the write
notices and apply modifications on shared data. Therefore,
merging and reducing number of write notices will reduce
its overhead and improve performance. To do so, before
creating a write notice, we first check if the range of new
write completely or partly overlaps with or is adjacent to any
existing write notices. If so, we change the existing notice
of interest to include the new write instead of creating a new
write notice. In particular, at release stage, we also merge
private write notices with the existing global write notices.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experiment platform is TI TMS320C6678 evaluation
board [15]. The board has a single C6678 processor and
a 2GB DDR3 memory. It is based on TI’s KeyStone multi-
core architecture, and has eight cores on chip, each of which
can run at up to 1.25 GHz. Cores are connected by on-chip
teraNet with a bandwidth of 2 Tbps. Each core has its private
L1 cache and shares an L2 cache.

1Unless noted, write notices mentioned in the rest of the paper refers to
the global write notices.

Table I: Benchmarks
Benchmark Input Size numIters
Compress 512x512 2048
Laplace 512x512 2048
Lowpass 512x512 2048
Wavelet 4096x4096 8192
MMT M=4, N=16384, P=64 -
MV M=4, N=16384, P=1 -
MM M=4, N=16384, P=64 -
MT M=512, N=512 8192

We took several commonly-used routines in many nu-
merical or multimedia applications. The benchmarks and
their input sizes are described in the first two columns of
Table I. MM, MV, and MMT, are matrix-matrix, matrix-
vector, and matrix-transposed matrix multiplication, respec-
tively. MT stands for matrix-transpose. All benchmarks are
implemented as multi-threaded programs. We divide the
computation equally by dividing the output array into equal
sub-arrays and making each core be responsible to compute
on one of the sub-array, and put a barrier at the end to ensure
all cores have finished the computation on its own portion
before the final result can be provided as an output.

B. Better Performance than COMIC

Our metric of performance is the reciprocal of execution
time. In this experiment, we show performance comparison
of our coherence scheme and COMIC, which are normalized
to our base line, namely, by disabling cache. As shown in
Figure 5, we achieve over 2X performance improvement
compared to the COMIC for all benchmarks. Moreover,
our approach can achieve on average 12X and up to 20X
performance improvement compared to the baseline.

To better understand the individual performance results
of the benchmarks, we analyzed the access patterns of
benchmarks and categorized their temporal locality and
spatial locality as strong or weak. We say that a benchmark
shows strong spatial locality, if more than one contiguous
memory locations are accessed in each iteration of the
innermost loop. Otherwise the benchmarks are said to show
weak spatial locality—since it only accesses discontinuous
memory locations. We say that a benchmark shows strong
temporal locality if any memory location is accessed more
than once over time. Otherwise the benchmark shows weak
temporal locality, since it accesses memory locations only
once. Compress, Laplace and Lowpass, show both strong
temporal and spatial locality, since to compute an element
in the target array, the program needs to access some
surrounding neighbors in the source array, e.g., to calculate
b[i][j], the program needs to access a[i-1][j-1], a[i-1][j],
a[i-1][j+1], a[i][j-1], a[i][j], a[i][j+1], a[i+1][j-1], a[i+1][j],
a[i+1][j+1], and over the time a[i][j] needs to be accessed for
the calculation of b[i-1][j-1], b[i-1][j], b[i-1][j+1], b[i][j-1],
b[i][j], b[i][j+1], b[i+1][j-1], b[i+1][j], b[i+1][j+1]. Wavelet
shows strong temporal locality, but it writes to two dis-
continuous locations in each iteration, which impairs the
spatial locality, and hurts performance as well. Both MV and
MMT access a large region of contiguous memory for many
times in a loop, showing both relatively strong temporal and
spatial locality. Although MM is very similar to MMT in
terms of functionality on multiplying two matrices, MM has
relatively weak spatial locality. This is because it accesses
a matrix column-wise, while the data for the matrix is laid
out in memory in row-major order. As a result, MM does
not show as much performance improvement as MMT does.



Figure 6: The comparison of runtime overhead of our approach and COMIC.
MT shows limited locality of reference. Array elements are
accessed in a column-wise manner in the transposed matrix,
and each element in both the original and transposed matrix
is accessed only once and never again. Arrays are stored
in row-major order. However, the result will be the same
if arrays are stored in column-major order. We can simply
transpose the arrays from row-major order to column-major
order in all the benchmarks, and we will get the same result.

Note that the performance of our approach over MMT,
MV, MM and MT vary significantly, while the performance
of COMIC does not show much variation. This is because
for every shared data access, COMIC has to check a dirty
bit to find out if the page has been invalidated, whereas our
approach does not. As a result, the performance gained from
locality of references is compromised in COMIC because of
the extra memory accesses introduced may poison the cache.

C. Reduced Runtime Overhead than COMIC

We show other factors that could affect performance in
this section. First, note that COMIC dedicates one core
to coherence management, so only seven of all the cores
were used for actually executing threads. Note that this
limitation of being able to execute only one thread on a
core is quite a common limitation in several real multi-core
architectures, e.g., the IBM Cell processor [23], the 48-core
Intel SCC [5], and the TI Keystone architecture [15]—our
experimental platform. This is to minimize the overhead of
operating system on the cores and to allow extremely power-
efficient bare-metal execution. Using less number of threads
affects the performance of COMIC. However, that is not the
only reason for the worse performance of COMIC. Figure 6
shows the fractions of coherence management and the actual
execution of benchmarks in total execution time for both
approaches. Overhead comprises all the actions related to
coherence management, e.g., comparison of different copies
of the same page. As shown in the figure, COMIC takes
up to 51% of overall execution time, while our approach
takes only 19% on average. By using our write-notice
based approach, we successfully avoid expensive twin-page
comparison, and eliminate the checking of dirty-bits of pages
for every shared data access.

D. More Scalable Overheads with Increasing Computation-
to-Communication Ratio

We compare the scalability of our approach to COMIC
as the inter-core computation-to-communication ratio in-
creases. To show that, we increase the workload assigned
to each core before the synchronization by increasing loop

counters in this experiment. By repeating the same work
before the barrier, the workload of each core is increased
before it needs to communicate with other cores at the
barrier, while the amount of time for inter-core commu-
nication at the barrier remains the same, since each core
modifies the same shared memory locations and thus only
needs to propagate the same amount of information to
subsequent accessing cores to these locations. Therefore,
it reduces the time spent on inter-core communication in
the overall running time. The third column of Table I,
i.e., numIters, shows the number of iterations the workload
will be repeated. The bigger numIters is, the lower the
weight of inter-core communication in the overall running
time. Figure 7 shows the impact of reducing the weight of
inter-core communication on the two different approaches.
The Y axis shows the performance normalized to the base-
line, which disables caches. The figure clearly shows that
benchmarks using our approach gets near-linear performance
improvement as the number of iterations increases, while
their performance suffers from the increasing overhead of
COMIC. The overhead of COMIC increases because dirty-
bit checking has to be done for every shared data access.
Although that bit checking can be done by a cheap modular
operation, it accumulates to a large overhead as the number
of iterations increases.

Another important observation is that, when the iteration
count is small, the overhead of our coherence management
stands out more, and our approach performs worse than
COMIC. This is because our approach uses write-update
protocol. Under such protocol, each core needs to fetch more
data than they actually need to. When there is very little
computation in each interval (for example, when each thread
mostly updates some elements of array with some constants
without any calculation), this drawback will become more
prominent. However, the overhead of our coherence manage-
ment gets amortized off as the amount of workload increases,
which should be acceptable as the communication should not
be dominant most of the time.

VI. SUMMARY

Hardware cache coherence does not scale well as the num-
ber of cores. Although processors with non coherent caches
are more power-efficient and scalable, they become hard
to program. On such processors, manual parallel program-
ming requires significant effort. In this paper, we present a
software approach which provides coherence management
functions for non-coherent cache multi-core processors to



Figure 7: Compute-intensity is varied by changing the numIters parameter.

improve programmability. We demonstrate that the benefit
of byte-level coherence management on non-coherent cache
multi-cores on the avoidance expensive the computation
overhead. Experimental results show that our approach per-
forms better than the previous approach due to the abated
coherence management overhead. On average, our approach
improves performance 12X compared to the naive way of
disabling cache, and more than 2X compared to the most
related work.
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