
Efficient Pointer Management of Stack Data for
Software Managed Multicores

Jian Cai, Aviral Shrivastava
Compiler Microarchitecture Laboratory

Arizona State University
Tempe, Arizona 85287 USA

{jian.cai, aviral.shrivastava}@asu.edu

Abstract—Scratchpad-memory (SPM) based memory hierar-
chy is a promising alternative to cache-based memory hierarchies,
due to the difficulty in scaling caches to processors with high
core count. However, explicit data management in software
is required on SPM-based memory hierarchies. This paper
focuses on optimizing the stack data management on SPM-based
multicore processors, as memory accesses to call stack present
in most applications. While previous works have developed
techniques to enable correct stack pointer management, they
have not optimized it. As a result, existing techniques still incur
high overhead. This paper proposes an automated compiler-
based scheme for efficient pointer management. Our experiments
on MiBench benchmarks demonstrate that our scheme almost
completely eliminates pointer management overhead. As a result,
as compared to the state-of-the-art approach, our approach
reduces the average execution time of the benchmarks by 52%.
Furthermore, with our approach, the performance of stack
management on SPM becomes better than hardware caches on
average even with conservative estimates.

I. INTRODUCTION

Low-power, yet high core-count embedded processors can-
not afford the overhead of coherent caches [1], [2], [3], [4].
The scratchpad memory (SPM) based system is a promising
alternative, as it provides a fast, low-power, and scalable
memory hierarchy—the SPM has 34% less area and consumes
40% less power than a cache of the same capacity [5]. Using
SPMs instead of caches not only improves power, but also
greatly simplifies the hardware design (and verification). SPMs
shift the task of data management from hardware to the soft-
ware, and therefore, multicore architectures with SPM-based
memory hierarchy are termed Software Managed Multicore
(SMM) architectures.

In SMM architectures, a core has to fetch data it needs
to its local SPM before accessing it. Therefore we need
techniques to manage data transfers between the SPM and the
main memory. Among all the different types of data (heap,
stack or global) to manage, optimized data management for
stack data is especially important for performance. [21] shows
(via profiling) that stack accesses account for around 64% of
overall data accesses in Mibench, a benchmark suite of typical
embedded applications [6].

State-of-the-art techniques to manage stack data on SMM
architectures move stack data between SPM and main memory
at the function call level. Therefore, these techniques need to

Fig. 1: Pointer management problem.

solve two inter-related problems[7]. i) Stack frame manage-
ment: stack frame of the function that is going to be executed
must be brought into the SPM before it executes, and the stack
frames of the functions that are not immediately needed may
be evicted to the main memory. ii) Pointer management: if
a stack frame of a function was evicted to the main memory,
and the currently executing function accesses a local variable
of the evicted stack frame (typically through a pointer), then
the access is invalid, as shown in figure 1. This is because the
pointer still contains the address of the local variable in the
SPM before it is evicted. It is therefore vital to correct the
address of the pointer, as otherwise the result of the execution
will be incorrect.

A previous work, [7] solves the problem of pointer man-
agement, by instrumenting the code to translate the pointer
address at each definition and use—A definition refers to the
write of a new value to the pointer, while a use refers to the
read of the value defined by the reaching definition or the
last write. While this enables correct execution, it incurs high
performance penalty. In this paper, we propose an efficient
compiler technique for managing pointers to stack data on
SMM architectures. The two key ideas of our approach are:
i) instead of translating the pointer address at each use of the
pointer inside a function, we translate it only once when it
is passed as the argument of the function. As a result, our
technique is able to remove a significant portion of the overall

(a) Code transformation. (b) Illustration of pointer management functions.

Fig. 2: The way pointer management functions work.

translations. ii) if the stack frame of the function whose local
variables are being accessed through pointers is guaranteed
to be present in the SPM, then when any of the pointers is
accessed, no translation is needed.

Experiments on benchmarks from the MiBench suite [6]
show that our approach almost completely eliminates the
pointer management overhead, and results in 52% reduction
of the average execution time, as compared to the state-of-
the-art pointer management technique [7] on top of the state-
of-the-art stack frame management technique [8] on SMM
architectures. We also compare the performance of our stack
pointer management on SPM with that on a cache-based
architecture. Even with conservative estimates, stack data
management on SPM outperforms stack data management on
a cache-based architecture by 12% on average.

II. RELATED WORK

Stack management techniques in general can be divided
into static approaches and dynamic approaches. Static ap-
proaches [9], [10], [11] map the most frequently used data
to SPM and keep the allocation fixed throughout execution,
while dynamic approaches allow the changes to the locations
of stack data at run-time. Static approaches do not perform
well since they do not take dynamic program behaviors into
consideration. As a result, most recent works focus on dynamic
SPM management techniques.

Many dynamic techniques [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [7], [8] have been developed to manage
stack data on SPM. [12], [13], [14], [15] introduce new
hardware functionality to manage the SPM, while the interest
of this paper lies in providing software solution to simplified
hardware. Among software solutions, [17] and [18] target on
arrays specifically, [16] mainly focuses on managing stack
data for recursive functions on SPM, while we manage all the
data in stack. [19] and [20] both rely on profile information,
therefore the input has to be representative for either of them
to deliver high-quality output, which is generally difficult. In
addition, both approaches have limited support for pointer
management. [19] relies on pointer analysis to identify and
translate the address for any pointer that refers to the variable
that is moved from the main memory to the SPM. If the point
analysis fails to identify any such accesses through pointers

and thus the requested memory addresses are not translated,
the execution may fail, since these accesses end up accessing
incorrect locations. [20] simply does not support using stack
pointers as call arguments. In this paper we are interested in
generic approaches of stack management that do not rely on
profiling or pointer analysis, and are able to manage pointers
correctly. To our best knowledge, only the Circular Stack
Management (CSM) [21], [7], [8] approaches provide such
solution. In this paper we will compare our work with [8],
which is the latest CSM work with the best performance.

III. BACKGROUND

All the CSM papers use the pointer management proposed
in [7]. The pointer management maintains two stack pointers:
one in SPM and one in main memory (assume the stack grows
from the higher address (stack base) to the lower address (stack
top)). It proposes three pointer management functions: l2g, g2l,
and ptr wr.

Figure 2 explains the functionality of these pointer man-
agement functions. Figure 2a shows the original code and
the transformed code with pointer management. Figure 2b
illustrates l2g and g2l calls at line 2 and line 4 in the
transformed code respectively, assuming the SPM is not large
enough to hold both the stack frames of function F1 and F2.
When F1 calls F2, the stack frame of F1 must be evicted
from SPM to the main memory to make space. The SPM
address of stack variable a defined in F1 which is passed to
F2 will become an invalid reference by the time it is accessed,
since the entire frame of F1 (thus the the stack variable a)
will have been moved to the main memory. In this case, l2g
function should be called on a in F1 to calculate the address
of the actual location of a in the main memory (line 2 in
the transformed code in Figure 2a). Notice when l2g(a) is
called, the stack frame of F1 has not been evicted to the
main memory yet. Therefore, the value of l2g(a) indicates the
memory location a will be moved to. At that time, l2g(a) is
smaller than the value of the memory stack pointer, and their
distance is the same as the difference between the value of
the SPM stack base and the SPM address of a, as offset in
Figure 2b indicates (the upper figure of Figure 2b). After F1
is evicted to the main memory, the value of memory stack
pointer is decreased by the size of the stack frame of F1.

Fig. 3: The key ideas of our approach.

Consequently, l2g(a) refers to the actual location of a, which
becomes larger than the value of memory stack pointer (the
lower figure of Figure 2b).

The result of l2g(a) is passed as an argument to F2 as its
parameter p. F2 then calls g2l function before dereferencing
it (line 4 in the transformed code). Since cores cannot access
main memory directly, g2l(p) allocates a local buffer in SPM,
followed by a DMA instruction to read the value from the main
memory location specified by p—or equally l2g(&a)—and
then return the address of the local buffer. The correct value
can then be read from the local buffer. Finally, F2 modifies
the value pointed by p, and calls ptr wr to write back
the modification from SPM to main memory (line 6 in the
transformed code).

Pointer management functions will not alter program se-
mantics. Consider the example in Figure 2 again, but this time
we assume that the SPM is large enough to hold the stack
frames of both F1 and F2. Therefore, when F2 is called, the
stack frame of F1 is still in the SPM, and we can safely remove
the stack frame management around line 3 at the transformed
code in Figure 2a. In such a case, the call to g2l in F2 (line
4) will do nothing but reverting the address translation done
by the l2g function in F1 (line 2), and reading from the SPM
address of a, which is the input to the l2g function. Similarly,
ptr wr will revert the translation and write to the SPM address
of a directly. Whether a stack variable has been evicted from
the SPM to the main memory can be told as below. If an
address that is passed to g2l or ptr wr is smaller than or
equal to the value of memory stack pointer, then the stack
variable the address refers (thus the enclosing stack frame)
is still in the SPM. In this case, g2l or ptr wr just need
to revert the address translation done by l2g and read from
or write to the SPM address. Otherwise, if the address is
greater than the value of the memory stack pointer, then the
stack variable has been evicted, and g2l and ptr wr will go
ahead and perform required DMA operations. Therefore, even
though pointer management from [7] unnecessarily inserts
extra pointer management functions, it can still ensure the

correctness of the execution of programs.
Pointer management from [7] solves the problem for cor-

rectness, but not for performance. On the other hand, our
approach removes unnecessary calls to pointer management
functions and improves performance of applications notice-
ably.

IV. KEY IDEAS OF OUR APPROACH

While the state-of-the-art pointer management from [7]
solves the pointer corruption issue correctly, it calls the l2g
function at every definition of stack data pointers, and the
g2l function on every use of the pointers, and results in
unnecessary calls to pointer management functions, which
eventually slows down the execution of programs.

Figure 3a and 3b show the original code and the code
with the pointer management from [7]. The calls to l2g in
line 4 in Figure 3b is not necessary, since the pointer p2
is only used in the same function the variable b is defined.
Meanwhile, although the calls to g2l in line 6 is necessary, it
can be promoted to be outside of the loop to avoid repeated
computations. Notice the calls to g2l in line 6 can not be
eliminated or reduced by standard compiler optimizations
such as common subexpression elimination or loop invariant
code motion. This is because g2l function needs to access
some global states (implemented as global/static variables),
such as the current values of the stack pointers, which could
be changed by function calls and stack frame management
between any two consecutive g2l calls. These interactions with
global states prevent standard compiler optimizations from
removing or relocating g2l calls, since the compiler cannot
guarantee the changes will not cause any unexpected side
effect to the semantic of programs.

This work aims to reduce these overheads based on two key
ideas: i) we only manage pointers when they are used as call
arguments instead of each of the uses, so that we only need to
translate once at the caller and the called function respectively.
ii) if the stack frame of a function is definitely in the SPM,
then any accesses via pointers to the local variables in the

Fig. 4: Identification of the potential pointer to stack.

stack frame do not need management. Figure 3c demonstrates
the first idea. Instead of calling l2g on every definition of
pointers (line 2 and 4 in Figure 3b), we only call l2g once
in F1 when it calls F2 and passes a pointer-type argument
(line 2 in Figure 3c). Also, we only call g2l function once at
the beginning of F2 and reuse the result (line 5, 7 and 8 in
Figure 3c), instead of calling it for every use (line 6 and 7 in
Figure 3b). The g2l function is called outside the for loop to
reduce overhead. Figure 3d shows the further optimized code
with the second idea. If we know for sure the stack frames
of F1 is in the SPM when F2 is called, then no stack frame
management is needed, neither the pointer management—the
references to the array a of F1 through pointer p in F2 will
be guaranteed to access the correct locations, as the stack
frame of F1 is not moved. The code in Figure 3d becomes
exactly the same as the original code. In other words, it
eliminates the overhead of stack management—both stack
frame management and pointer management.

V. DETAILS OF OUR APPROACH

A. Steps of Our Approach

To achieve the efficient pointer management, our approach
takes three steps. First, we need to decide if any pointer-type
arguments of a function can be potential references to stack
variables. Second, we will run the analysis to divide function
calls in the call graph into groups, so that all the stack frames
of each group can fit into the SPM at once. In the last step,
we insert pointer management functions properly based on the
previous analyses.

1) Identifying Stack Data Pointers at Function Calls: First
of all, we perform an inter-procedural analysis to find out if
any pointer-type arguments at function calls are potentially
referring to stack variables. A function may be called at
multiple locations during the execution of a program, therefore
the same parameter may refer to multiple arguments that can
be stack, heap or global variables, depending on the control
flow at run-time. Consider the call graph in Figure 4. When
F0 is called, the type of the argument that is referred by the
parameter p1 may have three different types. If the control flow
comes from F2, and cond is evaluated to be true in F2, then the

Fig. 5: The analysis to find out at which stack frames will
exist in SPM at the same time.

argument passed to F0 is a pointer to stack variable a, which is
defined in F1 and passed to F2 when it is called; Otherwise, if
the cond is evaluated to be false, then the argument is a pointer
to the global variable g. If the control flow comes from F3 to
F0, then p1 in F0 refers to the heap data referred by hp in F3.
Since the actual control flow is not known at compile-time, we
have to conservatively assume p1 refers to a stack variable.

To accomplish such analysis, we first go though all the
functions and identify all the pointer-type formal parameters.
Once we find such a parameter, we check all the call sites of
the function, and find out all the possible arguments. Any of
these arguments that refers to stack data needs to be managed.

Several cases pose challenges for this analysis. When a
pointer to stack data is passed as an argument to a recursive
function, then we need to call l2g on the pointer, and call
g2l on the result of l2g function that is passed to the called
function in the called function. This is because we do not know
how many times the recursion will happen at compile time,
so we need to conservatively assume the stack frame of the
caller is evicted when the called function is executed. When
the type of the variable a pointer refers to cannot be identified,
we conservatively assume it is a stack pointer and manage it.

2) Identifying Coexistent Stack Frames: This step decides
which stack frames can exist in SPM at the same time. We
use the same analysis from Smart Stack Data Management
heuristic (SSDM)[8]. Here we just explain the high-level idea.
Details of the algorithm can be found in [8].

The general idea of SSDM is that instead of managing stack
frames one at a time at every function call, we can manage
multiple stack frames of consecutive function calls along any
path of a call graph at the same time. Instead of evicting
the stack frame of the caller function from the SPM to main
memory to make space for the called function whenever a
function call happens, we can keep allocating SPM space for
stack frames of function calls, and perform the stack frame
management all at once only when there is not enough SPM
space.

In the given call graph in Figure 5, the size of the stack

(a) Previous pointer management calls g2l and ptr wr functions on
every read and write to stack variables.

(b) Our pointer management calls the g2l function before the first
read and ptr wr after the last write, and reuse the local buffer for
other accesses to the same memory location.

Fig. 6: Compared to previous pointer management, our approach reuses the local buffer created by g2l function and saves
management overhead.

frame of each function is 128 KB, and the size of the available
SPM space is 256 KB. Therefore, the available SPM space can
hold two stack frames at once. Assume the SPM is empty
at first, then in the given call graph, we know the stack
frame management are only necessary when F1 calls F2, or
when F1 calls F4. Any other function calls do not need such
management. For example, right before F0 calls F1, the SPM
only keeps the stack frame of F0, which takes up 128 KB
space. The spare space in the SPM is large enough to hold
the stack frame of F1. Therefore, no stack frame management
is needed when this call happens. As a result, we can divide the
call graph into three groups, {F0,F1}, {F2,F3}, and {F4}. The
three groups are separated from each other by the dash lines
in the figure, or what are termed cuts. Each cut between two
adjacent groups indicates the need for inserting stack frame
management functions. When any function call crosses a cut,
the stack frames of the group the caller is in (currently in the
SPM) are moved to the SPM, and the stack frames of the group
the called function is in are brought from the main memory
to the SPM. For instance, before F1 calls F2 in Figure 5, the
SPM holds the stack frames of F0 and F1. When F1 calls
F2, the stack frames of F0 and F1 are evicted to the main
memory, and the stack frames of F2 and F3 are brought to
the SPM.

Once we divide the call graph into different groups, we
know the stack frame management is only needed for function
calls that crosses any two different groups. This is true for
pointer management as well, since pointer management is
necessary only if stack frames are moved due to stack frame
management.

Our analysis initially places a cut on each edge of the call
graph, which specifies the need of stack management (both
of stack frame management and pointer management) for the
call represented by the edge, and then greedily remove the cut
which will result in the greatest reduction of stack manage-
ment overhead—for instance, inserting management functions
within a loop should be avoided as far as possible—while not
violating the constraint that the sizes of stack frames between
any two cuts should not be greater than the available SPM

space, until it can not find any such cut.
3) Inserting Pointer Management Functions: Once we have

the necessary information ready, we can decide where to insert
pointer management functions. We first go through the call
graph and check (1) if any function call passes any pointers
that may refer to stack variables (from the analysis done in
V-A1), and (2) if the stack frames that enclose these stack
variables are in the SPM when the pointers are accessed in
the called function, or in other words, if the called function
that accesses the pointers belongs to the same group of the
function that defines the stack variables (from the analysis
done in V-A2). Upon the confirmation of both conditions, we
need to call l2g function on these pointers; otherwise, if any
such pointer is not referring to a stack variable, or the stack
variable the pointer refers to is in the SPM, then no pointer
management is required for this pointer.

If we call l2g on a pointer-type argument on any call
site of the called function, we need to call g2l and ptr wr
function in the called function for reads and writes to the
pointer respectively, since we do not know which call site
will the control flow comes at compile-time. While this may
cause unnecessary calls to g2l and ptr wr functions, we have
explained that extra pointer management functions will not
affect the correctness of programs. On the other hand, if we do
not conservatively insert these pointer management functions
in the called function, the correctness of execution will not
be guaranteed, since there is a chance that the control flow
may come from the caller function with l2g function calls at
run-time.

As an optimization, we reuse the local buffer created by
g2l function, in contrast to creating new buffer and destroying
it every time by the previous approach. Figure 6 shows an
example. The previous pointer management [7] will call g2l
and ptr wr function on each read and write to stack data
pointer p in F2 respectively, even if these memory accesses are
to the same memory location. On the other hand, our approach
only inserts g2l before the first read and ptr wr after the last
write of p, and redirect the other memory request to the local
buffer g2l p created by the g2l function call. With such a

Fig. 7: The compilation process of benchmarks used in exper-
iments.

policy, we can avoid redundant memory allocation and DMA
requests.

When g2l or ptr wr function is called, the compiler needs
to pass the size of the stack variable in case of triggering DMA
transfers. When there are multiple possible sizes, we need to
use the maximal possibility. For example, a function may be
called at two different cites with two array-type arguments of
different sizes. In this case, since we do not know from which
call site control will flow at run-time, we have to use the size
of the larger array. While this approach may transfer more than
necessary data if at run-time the control flow comes from the
function with the smaller array, using the maximum size will
not affect the correctness of the program being executed.

VI. EXPERIMENTS

A. Improvement Over The State of The Art

We compare our pointer management with the state-of-the-
art pointer management proposed by [7], on top of the latest
stack frame management technique Smart Stack Data Manage-
ment (SSDM) [8]. We implement the two approaches of stack
management as passes in LLVM compiler infrastructure [22].
We compile benchmark applications from Mibench benchmark
suite [6] with each of the two LLVM passes, then run and
collect performance statistics of the execution of generated
binaries in the Gem5 CPU simulator [23].

The compilation process of benchmarks is shown in Fig-
ure 7. All the compilations in our experiments are done with
O3 optimization on. The LLVM passes are implemented at the
Intermediate Representation (IR), a transitional stage between
the translation from source code to machine language. In
other words, our passes are independent of the Instruction
Set Architecture (ISA) used, and should work with different
compiler back ends for code generation.

We build the SPM aside the main memory, and implement
a DMA instruction for data transfers between them in the
Gem5 simulator. The DMA cost in our experiments consists
of the start-up cost and the transfer time. The start up cost

Fig. 8: Normalized execution time of benchmarks with stack
management using our pointer management compared to using
the previous pointer management. Our pointer management
reduces the execution time by 52% on average.

includes all the time spent setting up the DMA transfer, and
the transfer time is the time spent on transferring the requested
data, which can be calculated by dividing the size of the data
by the bandwidth. The CPU frequency is set to 3.2 GHz in the
Gem5 simulator. The start up cost is set to 91 nanoseconds
(about 291 CPU cycles), and the data transfer rate is set to
0.075 nanoseconds (0.24 CPU cycles) per byte of data [24] (4
bytes/cycle). These numbers are consistent with the parameters
used in [8].

Table I shows the number of pointer management function
calls introduced by the state-of-the-art pointer management
and our approach (the first three columns under Previous
Pointer Management and Our Pointer Management cate-
gories respectively). The numbers show that our approach
almost completely eliminates calls to the pointer management
functions, i.e. l2g, g2l and ptr wr. For example, for rijn-
dael.encode, the numbers of calls of l2g, g2l, and ptr wr are
reduced from 155940, 1442301, 28 to 1, 1, and 0 respectively.
These results are for experiments on SMM architecture with
the SPM size equal to the average of the minimum and
maximum stack size for each application. We will explain our
choice of the SPM size later.

The reduction of pointer management consequently reduces
the execution time of applications. Figure 8 shows the normal-
ized execution time of benchmarks using our approach over
the previous approach. Our approach achieves on average 52%
reduction of execution time. Notice that even for the bench-
marks in which we do not achieve significant performance
improvement, for instance, adpcm.decode, and adpcm.encode
our pointer management still reduces the pointer management
overhead. We get less improvement because the time spent on
pointer management is insignificant compared to the execution
time in these applications.

B. Comparable Performance Compared to Caches

On top of the comparison with the state-of-the-art stack
management techniques for SMM architectures, we also com-
pare the performance of our technique with hardware caching.
We perform a conservative comparison with cache-based ar-
chitectures. The cache-based system is configured to have a
4-way L1 data cache which only caches the stack data. All
the other memory accesses are considered as cache hits. The

Fig. 9: Normalized execution time of the stack management
with our pointer management on a SMM architecture to
hardware caching. Our approach achieves 12% reduction of
execution time on average, even with conservative estimates.

size of the cache is configured to be the smallest power of
two greater than the SPM size. Also, we set the cache miss
penalty to be the same as the DMA start-up cost. The overhead
in a cache-based architecture is equal to the number of cache
misses times the cache miss penalty. Meanwhile, the overhead
of stack management in a SPM-based architecture includes
both the time for executing the extra management instructions,
and the time for DMA operations to move data. For each
application, the SPM size is the average of the minimum and
maximum stack size of the application (again the reason will
be explained later).

Table I shows the stack management overhead caused by
our approach on an SMM architecture (the fourth to sixth
columns under Our Pointer Management category) versus that
caused by hardware caching. The DMA transfers for bench-
marks without pointer management are triggered by stack
frame management. When the benchmark rijndael.encode
is executed on the SMM architecture, our approach requires
87 management instructions and 2 DMA calls which transfers
2336 bytes of data. When this benchmark is executed on a
cache-based system with the stack data being managed on a
cache slightly larger than the SPM, it incurs 244983 misses.
Therefore, even with the extra instructions, SPM management
is still more efficient. Figure 9 plots the execution time of
a benchmark on the SMM architecture, normalized to the

Fig. 10: Execution time of benchmarks with our approach
using three SPM sizes, all normalized to the execution time
that uses the minimum SPM size.

execution time of the same application run on the cache-
based system. The plot shows that our approach reduces the
execution time by 12% on average.

C. Choice of SPM Stack Size

Figure 10 shows the execution time of the benchmarks with
three SPM sizes: the minimum required stack size (size of the
largest stack frame in the application), the maximum possible
stack size (sum of the sizes of all the stack frames), and their
average. All of them are normalized to the execution time
when using the minimum size. As the figure shows, while
using the minimum size may cause longer execution, using
the average size or using the maximum size are not much
different.

This is because in all the benchmarks we used, the size
of the largest stack frame is much larger than the others, so
even if we only use the average SPM size (greater than the
size of the largest stack frame), it is large enough to hold
multiple small stack frames, which is able to eliminate pointer
management for calls between these functions with small stack
frames. However, if we only allocate the minimum required
size (exactly equal to the size of the largest sack frame), and
the function with largest stack frame happens to be called
in the loop, there will be no other choices but to evict stack
frames within the loop every time the function is called, which

TABLE I: Overhead of pointer management

Previous Pointer Manage-
ment

Our Pointer Management Hardware
Caching

benchmark #l2g #g2l #ptr wr #l2g #g2l #ptr wr #DMA Overall
DMA Size

#Management
Instructions

#L1D Misses

adpcm.decode 3428 2740 1370 0 0 0 0 0 0 30
adpcm.encode 3427 2740 1370 0 0 0 0 0 0 63
CRC 1368874 2737731 1368866 2 2 2 2 160 156 5361
dijkstra 90548 45309 44925 0 0 0 30758 1477664 784309 51964
patricia 104017 52763 3801 0 0 0 4902 436896 124551 274607
rijndael.decode 136447 1422796 11 1 1 0 2 2336 87 244983
rijndael.encode 155940 1442301 28 1 1 0 2 2336 87 244983
sha 5041 19827 12270 0 0 0 2 608 50 1578
stringsearch 606 798 57 0 0 0 0 0 0 756
susan.corners 50 242719 103 5 4 3 44 1703104 1331 36
susan.edges 50 550091 2716 5 4 3 44 1703104 1331 37
susan.smoothing 48 1630815 1535 7 6 4 46 2423392 1459 29

causes much higher overhead, such as rijndael.encode and
rijndael.decode. Therefore, the average size is chosen to
balance the execution time and SPM space used.

VII. CONCLUSION

In this paper we proposed an approach of pointer manage-
ment on stack data for Software Managed Multicore (SMM)
architectures. Our approach divides function calls of a pro-
gram into groups based on the call graph and inserts pointer
management functions only if a pointer to stack data is
defined and used in two different groups. The experimental
results demonstrate that our approach not only significantly
improves overall performance compared to the state-of-the-art
pointer management in stack management, but also delivers
comparable performance over using the cache for stack data
management.

ACKNOWLEDGMENT

This work was partially supported by funding from National
Science Foundation grants CCF 1055094 (CAREER), and
CNS 1525855.

REFERENCES

[1] G. Bournoutian and A. Orailoglu, “Dynamic, Multi-core Cache Coher-
ence Architecture for Power-sensitive Mobile Processors,” in Proc. of
CODES+ISSS, 2011, pp. 89–98.

[2] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the Memory Hierarchy for Disciplined Parallelism,” in Proc. of PACT,
2011, pp. 155–166.

[3] A. Garcia-Guirado, R. Fernandez-Pascual, A. Ros, and J. Garcia,
“Energy-Efficient Cache Coherence Protocols in Chip-Multiprocessors
for Server Consolidation,” in Proc. of ICPP, 2011, pp. 51–62.

[4] Y. Xu, Y. Du, Y. Zhang, and J. Yang, “A Composite and Scalable Cache
Coherence Protocol for Large Scale CMPs,” in Proc. of ICS, 2011, pp.
285–294.

[5] B.-S. L. M. B. R. Banakar, S. Steinke and P. Marwedel, “Scratchpad
memory: a design alternative for cache on-chip memory in embedded
systems,” in Proc. of CODES, 2002, pp. 73 – 78.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A Free, Commercially Representative
Embedded Benchmark Suite,” Proc. of Workload Characterization, pp.
3–14, 2001.

[7] K. Bai, A. Shrivastava, and S. Kudchadker, “Stack Data Management
for Limited Local Memory (LLM) Multi-core Processors,” in Proceed-
ings of the International Conference on Application Specific Systems,
Architectures and Processors (ASAP), 2011, pp. 231–234.

[8] J. Lu, K. Bai, and A. Shrivastava, “SSDM: Smart Stack Data Manage-
ment for Software Managed Multicores (SMMs),” in Proceedings of the
50th Design Automation Conference (DAC), 2013.

[9] O. Avissar, R. Barua, and D. Stewart, “An Optimal Memory Allocation
Scheme for Scratch-pad-based Embedded Systems,” ACM TECS, vol. 1,
no. 1, pp. 6–26, 2002.

[10] M. Verma, S. Steinke, and P. Marwedel, “Data Partitioning for
Maximal Scratchpad Usage,” in Proceedings of the 2003 Asia and
South Pacific Design Automation Conference, ser. ASP-DAC ’03.
New York, NY, USA: ACM, 2003, pp. 77–83. [Online]. Available:
http://doi.acm.org/10.1145/1119772.1119788

[11] N. Nguyen, A. Dominguez, and R. Barua, “Memory Allocation for
Embedded Systems with A Compile-time-unknown Scratch-pad Size,”
in Proc. of CASES, 2005, pp. 115–125.

[12] M. Mamidipaka and N. Dutt, “On-chip Stack Based Memory Organiza-
tion for Low Power Embedded Architectures,” in Proc. of DATE, 2003,
pp. 1082–1087.

[13] F. Poletti, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J. M.
Mendias, “An Integrated Hardware/Software Approach for Run-time
Scratchpad Management,” in Proc. of DAC, 2004, pp. 238–243.

[14] S. Park, H.-w. Park, and S. Ha, “A Novel Technique to Use Scratch-pad
Memory for Stack Management,” in Proc. of DATE, 2007, pp. 1478–
1483.

[15] H. Cho, B. Egger, J. Lee, and H. Shin, “Dynamic Data Scratchpad
Memory Management for a Memory Subsystem with an MMU,”
in Proceedings of the 2007 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, ser. LCTES
’07. New York, NY, USA: ACM, 2007, pp. 195–206. [Online].
Available: http://doi.acm.org/10.1145/1254766.1254804

[16] A. Dominguez, N. Nguyen, and R. K. Barua, “Recursive Function
Data Allocation to Scratch-pad Memory,” in Proceedings of
the 2007 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, ser. CASES ’07. New
York, NY, USA: ACM, 2007, pp. 65–74. [Online]. Available:
http://doi.acm.org/10.1145/1289881.1289897

[17] M. T. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Ka-
dayif, and A. Parikh, “Dynamic Management of Scratch-Pad Memory
Space,” in Proc. of DAC, 2001, pp. 690–695.

[18] L. Li, L. Gao, and J. Xue, “Memory Coloring: A Compiler Approach for
Scratchpad Memory Management,” in Proc. of PACT, 2005, pp. 329–
338.

[19] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic Allocation
for Scratch-pad Memory Using Compile-time Decisions,” ACM TECS,
vol. 5, no. 2, pp. 472–511, 2006.

[20] L. Gauthier and T. Ishihara, “Implementation of Stack Data Placement
and Run Time Management Using a Scratch-Pad Memory for Energy
Consumption Reduction of Embedded Applications,” IEICE, vol. 94-A,
no. 12, pp. 2597–2608, 2011.

[21] A. Kannan, A. Shrivastava, A. Pabalkar, and J.-e. Lee, “A
Software Solution for Dynamic Stack Management on Scratch Pad
Memory,” in Proceedings of the 2009 Asia and South Pacific
Design Automation Conference, ser. ASP-DAC ’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 612–617. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1509633.1509775

[22] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 75–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=977395.977673

[23] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The Gem5 Simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[24] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor communi-
cation network: Built for speed,” IEEE Micro, pp. 10–23, 2006.

