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Abstract — Wearable, mobile computing platforms are 

envisioned to be used in out-patient monitoring and care. These 

systems continuously perform signal filtering, transformations, 

and classification, which are quite compute intensive, and quickly 

drain the system energy. The design space of these human 

activity sensors is large and includes the choice of sampling 

frequency, feature detection algorithm, length of the window of 

transition detection etc., and all these choices fundamentally 

trade-off power/performance for accuracy of detection. In this 

work, we explore this design space, and make several interesting 

conclusions that can be used as rules of thumb for quick, yet 

power-efficient designs of such systems. For instance, we find that 

the x-axis of our signal, which was oriented to be parallel to the 

forearm, is the most important signal to be monitored, for our set 

of hand activities. Our experimental results show that by 

carefully choosing system design parameters, there is 

considerable (5X) scope of improving the performance/power of 

the system, for minimal (5%) loss in accuracy. 

I. INTRODUCTION 

Human activity detection is becoming increasingly 
important, not only for high-end athletics training, interactive 
and immersive games and virtual reality environments, but also 
in healthcare, both for in-patient training and out-patient 
monitoring and support. For example, a stroke survivor’s 
physical therapist wants to know if their patient is using their 
affected arm during the course of the day, how they are using 
it, (e.g., reaching out or writing), and how many times.  

Human activity detection is typically done by attaching 
position or acceleration sensors on the affected part of the 
body, and then logging and analyzing the sensor outputs. The 
analysis consists of several signal filtering, signal 
transformations, and pattern classification steps, that are quite 
computationally intensive. In order to provide maximum 
freedom of movement for the patient, and achieve maximum 
monitoring, all this computation must be performed on a 
battery operated mobile device, which the patient has to carry 
all the time. Given the limited storage capacity and the critical 
need to minimize the battery weight to carry, it is desirable to 
implement this patient activity monitoring system in a power-
efficient manner. This paper explores the power/performance 
and accuracy tradeoffs in the design of a human activity 
detection system. 

Our hand-movement monitoring system comprises of a 

wrist mounted 3-axis accelerometer, and we intend to monitor 
a set of patient activities, including sitting, standing, walking, 
reaching forward (as if one wanted to pick up an object in front 
of them) and lifting the hand (as if to eat). As opposed to trying 
to classify sensor output signals into human activity at each 
moment, we detect the change in the pattern of the signal rather 
than a change in the signal itself. This scheme is called Activity 
Transition Detection, and has been shown to be more power-
efficient. Fundamentally, this scheme has two main steps, 
feature selection and transition detection, and implementation 
of an activity transition detection system requires making 
several choices, including sampling frequency, feature 
detection algorithm, dimensionality of feature, and width of the 
window of transition detection etc. The choice of each of the 
parameters and algorithms essentially trades-off power and 
performance for accuracy. 

While some of the key design parameters, e.g., sampling 
frequency have been explored by previous researchers [7], 
previous works have not performed a multi-parameter 
exploration that we present in this work. Our experimental 
results underline the importance of design space exploration for 
designing an accurate, yet power-efficient activity transition 
detection system. By carefully selecting design parameters and 
algorithms, and giving a leeway of even 5% on accuracy, we 
can improve the power/performance by up to 5X. From the 
results of this holistic design space exploration, we cull out 
several rules of thumb for quick, yet power-efficient design of 
such systems. For example, we observe that i) significant 
power/performance can be gained at little loss of accuracy by 
reducing the dimensionality of feature detection, ii) the x-axis 
of the output of 3-axis accelerometer, which was oriented to be 
parallel to the forearm, is the most important signal to be 
monitored, for our set of hand activities. This is, even though 
we differentiate between sitting and standing as activities.  

 The rest of the paper is organized as follows: We start with 
discussing previous work (Section 2), and then explain our 
research problem in more detail (Section 3). Section 4 focuses 
on the design space of our system and Section 5 explains the 
transition detection method further. Section 6 defines the 
evaluation metrics for transition detection method. Section 7 
discusses experiments results, its analysis and insights gained. 
Finally, we conclude in Section 8. 
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II. RELATED WORK 

Stäger, et al. [7] presented an empirical design 
methodology to explore the trade-offs between power and 
accuracy. Their work used a wrist-mounted device with 
accelerometers and a microphone to capture data of people 
using kitchen appliances. They took a low-power approach 
from the beginning, investigating and showing how sampling 
frequency and feature selection change their system’s power 
consumption. Their work focused on activities where the user 
interacted with sound-making kitchen appliances whereas the 
method we describe in this paper does not depend on sound. 

 Huynh, et al. [2] also use a probabilistic model and sliding 
windows to detect activity patterns. Though they don’t 
specifically try to detect transitions between activities, they 
mention their system is capable of detecting transitions. Also, 
they do not take power into their design considerations.  

Krause, et al. [4] used the accelerometers on the eWatch 
system to classify five activities: walking, running, standing, 
sitting and climbing or descending stairs. They showed a 4x 
increase in the lifetime of their wrist-mounted system, without 
significantly reducing prediction accuracy, by reducing the 
sampling frequency and exploring different schedules to run 
their classifier. They refer to these schedules as selective 
sampling strategies.  

French, et al. [1] expanded on the work of [4] by collecting 
more data and specifically evaluating different selective 
sampling strategies. The strategies they tested were a baseline 
uniform sampling strategy, one that samples over the 
distribution of duration times of activities, and one that samples 
based on the probability of a transition occurring. Our work in 
activity transition detection is an alternative to the selective 
sampling strategies [1] and [4] used. Whereas their methods 
rely on a priori knowledge about the duration of activities and 
probabilities of transitions, our methods assume no prior 
knowledge. Further, we explore a much larger design space 
beyond just sampling rate.  

III. TRANSITION DETECTION OUTLINE 

Our goal is develop methods of sensing on small, wearable 
computing platforms that minimizes power consumption 
without sacrificing too much performance. To accomplish this 
we need to first define a set of activities we are interested in, 
determine what sensors can sense these activities, develop 

some method to accomplish our stated task of detecting activity 
transitions, and then systematically explore the independent 
variables in the system until arriving at a combination that 
satisfies some design constraint. Fig. 1 outlines the general 
procedure of our transition detection system. Sensors create a 
signal representation of a patient’s activity. Features are 
calculated from this signal. The temporal resolution, meaning 
the sampling frequency and other time-related constructs, affect 
how the representation of the signal and features, which are 
then used by our transition detection algorithm. 

We choose a set of basic activities that physical therapist of 
stroke survivor wants to monitor. The set of activities are, 
sitting, standing, walking, reaching forward (as if one wanted 
to pick up an object in front of them) and lifting the hand (as if 
to eat). These activities and gestures are the building blocks to 
other, more complex activities and gestures, such as the 
activities of daily living [3], a widely used list of common 
activities used to assess the function of the elderly or infirm. 

We propose to detect transitions using a sliding window 
technique that compares two blocks of time and computes the 
likelihood that the activity is different between those two 
blocks. Several samples are grouped into observations, from 
which features are calculated. These observations are then 
grouped into “windows,” or blocks of time the algorithm looks 
at to detect transitions. We next discuss the design space 
followed by a more thorough description of the transition 
detection algorithm. 

IV. DESIGN SPACE 

In the following sections we outline the parameters of our 
design space in three broad categories: sensors, features, and 
temporal resolution, meaning the various time-based controls 
(sampling frequency, window duration, etc.) we have in the 
system. We acknowledge they represent just a few options 
compared to what is possible 

A. Sensors 

To sense the activities we are interested in we chose to use 
a wrist-mounted triaxial accelerometer. Accelerometers offer 
several advantages, beginning with the fact that they’re small, 
lightweight, and inexpensive. Accelerometers are also widely 
used in the literature on wearable computing systems and 
human activity recognition [9]. We also investigated using 
gyroscopes and magnetometers. We found the magnetometers 
in our test system to be too noisy for any practical use and 
preliminary tests that included gyroscopes yielded poor results.  

We used a triaxial accelerometer and experimented with all 
seven possible combinations of signals, {x-axis; y-axis; z-axis; 
x and y axes; x and z axes; y and z axes; x, y, and z axes}. 

B. Features 

Features are some aspect or quantitative measurement of 
the signal. They can be simple time-domain measurements 
such as maximum, minimum, variance, and mean, or 
frequency-domain based such as the Fast Fourier Transform 
(FFT) and the Discrete Cosine Transformation (DCT). Other 
projects have had success using wavelet transformations [5], 
[6]. Each feature has its own computational complexity, 
summarized in Table 1. Computational complexity of feature 

Activity 

Sensors 

Feature

Transition Detection 

Design 
Space 

Temporal 
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Figure 1. System Flow Chart. The design space in low-power 

activity transition detections focuses on the sensors that detect 

activities, the features extracted from these signals, and the temporal 

resolution or time-dependent properties of the system.  



extraction is important because it is directly related to power 
consumption [8]. 

TABLE 1. FEATURES AND COMPUTATIONAL COMPLEXITY. THE 

COMPUTATIONAL COMPLEXITY AND DIMENSION OF EACH FEATURE AFFECTS 

POWER CONSUMPTION.  

Feature Computational Complexity 

Max O(N) 

Mean O(N) 

Min O(N) 

Variance O(N) 

FFT O(N log N) 

DCT O(N log N) 

Haar Wavelet O(N) 

Daubechies Wavelet O(N) 

C. Temporal Resolution 

The third variable is sampling frequency. We chose 100Hz 
as a baseline. We chose this value because the fastest hand 
movements are about 5 Hz, and a good rule-of-thumb is to 
oversample about 20x when using a noisy sensor. Realizing 
there are low-power advantages to sampling at lower 
frequencies and encouraged by the good results of Krause et al. 
[4], who sampled at much lower frequencies, we also 
experimented sampling at 50, 20, and 10 Hz. Lower sampling 
frequencies mean fewer samples to process, faster runtimes, 
and increased power savings.  

The fourth variable is the size of the observation described 
in Sections 3 and 5. We call this observation a frame and define 
it as the number of samples that the above features are 
extracted from. In our study we used frame sizes of 10 and 20 
samples.  

Last we have the length or duration of the sliding window, 
measured in seconds. The length of the window affects the 
number of observations used to calculate the likelihood 
function, as well as the total number of comparisons. In our 
study we used window lengths of 6, 8, 10, 12, 14, 16, 18, and 
20 seconds.  

As we’ve defined them, there are 4480 combinations of 
these variables in our design space. 

V. TRANSITION DETECTION 

Our transition detection method uses a measurement of how 
different two sections of the signal are within a bounded 
window of time. We split the window in half, creating left and 

right window panes, as seen in Fig. 2. We want to get some 
measure of how different the panes are from each other and the 
entire window, so for each of these panes and for the entire 
window itself, we calculate a log-likelihood function for each 
signal we are analyzing: 
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where x1, …, xN denote the N observations from the left, right 

or the whole window, µµµµ and ΛΛΛΛ are the mean feature vector and 
covariance matrix in the Gaussian model. The probability p is 
derived from the multivariate Gaussian probability distribution 
function. Each observation is a vector of features extracted 
from each signal. 

Once these likelihoods have been calculated for each signal, 
we combine them in a log-likelihood ratio test, seen in 
Equation 2. 
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In this equation, the variable i represents the frame immediately 
left of the center line in Fig. 2 labeled “Possible Transition” 
and Nf is the total number of frames per window. The ratio RT 
will be close to one when no transition is present and greater 
than one when a transition is present. It peaks where the 
probability of a transition is greatest. 

VI. EVALUATION METRICS 

To evaluate our transition detection system, tested each 
combination of variables on their accuracy and runtime. The 
following subsections describe our accuracy measurements and 
our model for computational complexity, which directly affects 
runtime. 

A. Accuracy 

Our accuracy measurements are based on hits, misses and 
false positives. Hits are the number of times the log-likelihood 
ratio test correctly detected a transition, false positives are 
when it detected a transition when none was there, and misses 
are the number of times it did not detect a transition. We then 
combine these into precision, and recall, where 
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A common measure that combines both is the F-Score: 
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Figure 2. Our sliding window technique. The window is divided into 

left and right panes and compared using a log-likelihood ratio test. 

The window panes are made of several frames, which are comprised 

of several samples (shown in dashed lines). Features are calculated 

per frame and can be a scalar or a vector.  

Window Size (Sw) 

Possible Transition 

Frame Size (Sf) 

Window Pane 



F is 1 when both precision and recall are 1. We also a 
define Reverse F-Score (RF) measure: 

 FRF −=1  (6) 

which reverses the F-Score so that 1 is bad and 0 is good. We 
use RF to more easily visualize accuracy vs. runtime. 

B. Computational Complexity 

In this work, we estimate power as just computation 
complexity metric, since to a first order, power consumption is 
very strongly correlated to computational complexity. This is 
because computational complexity directly affects runtime and 
runtimes affect power consumption. We’ve developed a model 
for computational complexity based on the variables in our 
system, which we summarize in Table 2. 

TABLE 2. DEFINITION OF MODEL VARIABLES. THESE ARE SOME OF THE 

PARAMETERS IN OUR DESIGN SPACE. D IS A SCALAR FOR MEAN, MIN, MAX, AND 

VARIANCE, BUT A VECTOR FOR DCT, FFT AND THE TWO WAVELET 

TRANSFORMATIONS. 

Variable Description 

Fs sampling frequency (samples/sec) 

Sw window size (sec/window) 

Sf frame size (samples/frame) 

D dimension of the feature 

The computational complexity (C) of our system can be 
broken up into two parts: feature extraction (CFE), and the log-
likelihood ratio test (CRT). We define: 

 C = CFE + CRT (7) 

If this were running in realtime, or in other words, the 
steady-state case, then the best way to look at it is to consider 
the complexity per comparison. For feature extraction:  

 )( fcFE SFC =  (8) 

where Fc is the complexity of the chosen feature. For 
example, N for max/min/mean and N·log(N) for FFT and DCT. 
This equation assumes that only one signal and one feature are 
being analyzed. The second part of complexity is:  
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is twice the number of frames per window. 

Multiplying by two is necessary because in each comparison 
the window is essentially processed twice by looking at the left 
and right panes and the whole window. The square and cube 
powers in (9) are there because of the calculation of the 
covariance matrix and the inverse of the covariance matrix in 
the multivariate Gaussian probability distribution function. See 
the Appendix for more details on the derivation of Equation 9. 

VII. EXPERIMENTS 

For this experiment we used a SparkFun 6-DOF IMU v3 as 
seen in Fig. 3. The SparkFun device features a Freescale 

MMA7260Q 3-axis accelerometer as well as gyroscopes and 
magnetometers, though only the accelerometers were used in 
this experiment. This device uses a LPC2138 ARM7 
microcontroller and Bluetooth to communicate with a 
computer. The SparkFun IMU was rigidly mounted to a 
subject’s right wrist while they performed sequence of 
activities. The device was mounted such that the 
accelerometer’s x-axis was parallel to the forearm, pointing 
toward the elbow, the y-axis perpendicular to the forearm, 
pointing in the same direction as the thumb when it is 
outstretched, and the z-axis pointing into the hand from the 
back of the hand to the palm. All data was sampled at 100Hz 
and processing of the data was done off-line using Matlab. 

A. Power/Performance and Accuracy Trade-offs 

We estimate the accuracy and measure the performance of 
each sequence of activities, for each design alternative. 
Accuracy is measured as Reverse F-Score (RF), while 
performance is computed as average runtime per activity 
sequence. We define runtime in this way because we want to 
compare the runtimes across all activity sequences, which are 
of different durations. 

Fig. 4 plots the performance and accuracy of all design 
alternatives. Out of the total 4480 combinations, only 15 are 
pareto-optimal, and are connected by a curve, and marked by 
circles on the graph. The pareto-optimal points are also 
summarized in Table 3. Each pareto-optimal design point 
represents a design alternative for which there is no better 
performing design alternative for a given F-Score. These are 
the most interesting alternatives in the design space.  

A couple of interesting observations can be made about 
these Pareto optimal design point. The difference in accuracy 
between the top two rows in Table 3 is only 5%, but the top 
combination runs ~5.6x longer than the second, meaning it’s 
computational complexity and power consumption is much 
greater. Thus, significant power savings can be achieved if 
small sacrifices in accuracy are tolerable. 

Figure 3. The SparkFun 6-DOF IMU v3. This device features a 3-axis 

accelerometer, 3-axis gyroscope, 2-axis magnetometer and Bluetooth 

connectivity. In our tests, this device was attached to the right wrist. 

x-axis 

y-axis 

z-axis 



The eight pareto-optimal points on the lower right side of Fig. 
4, all have a sampling frequency of 100Hz, while the seven on 
the top-middle are all sampled at 20Hz. Interestingly there is 
not much gain in accuracy when sampling at 50Hz (“+” 
marked points) as compared to 20 Hz (points marked by “x”), 
while there is significant improvement in performance. It 
appears the 10Hz combinations ran very fast, but simply did 
not have enough data to identify the transitions.  

All Pareto points, except the one with the lowest RF, have a 
frame size of 20 samples per frame.  The fact that, on average, 
the 20 samples per frame combinations ran faster the 10 
samples per frame combinations was predicted by our model 
for computational complexity in the equations described in 
Section 6.2. Frame size is in the denominator in Equation 9; 
therefore dividing by a larger frame size reduces the overall 
complexity. This also makes intuitive sense because with a 
larger frame size there are fewer frames, or observations, per 
window and features are calculated per frame.  

Note also that 12 of the 15 Pareto points use the x-axis, 
which represents the line parallel to the forearm, from wrist to 
elbow. The fact that so many of the Pareto optimal points use 
this axis indicates that it is important for detecting the kinds of 
activities and transitions between the activities we tested.  

B. Low-Dimensionality Feature-Detection  is better 

Another interesting conclusion, we can draw from the 
Pareto points is the fact that most of them, all except the one 
with the lowest RF, use simple features such as mean, 
minimum, maximum, and variance. These features performed 
very fast compared to the more complex features such as DCT, 
FFT, and the wavelet transformations. Even though both the 
wavelet transformations are O(N), just like the simple features, 
the wavelets are represented by a vector of coefficients, rather 
than a scalar, which the simple features use. This is a key 
difference in the runtime between the two groups. 

Fig. 5 shows the Pareto optimal points for each feature and 
the best overall. The best overall curve, shown in red, is the 
same as the curve shown in Fig. 4. Notice how the simple 
feature group and the more complex feature group have similar 

curves within their group. The increase in runtime in the 
complex feature group is attributable to the increased feature 
dimension. Equation 9 shows that computational complexity is 
proportional to the square and cube of the dimension of the 
feature. These two elements dominate the equation when the 
dimension of the feature is high. Fig. 6 shows how the number 
of frames per window and the dimension of the feature affect 

computational complexity. It shows the graph of 32
DDN f +⋅ , 

Figure 4. System Design Space. The red circles highlight the Pareto 

optimal points, which are dominated by the 100Hz and 20Hz 

sampling frequencies. All combinations with a sampling frequency 

of 10Hz had an RF of 1, meaning they did not detect any transitions. 

Note the x-axis is log scale and the y-axis is linear. 

Figure 5. The Pareto optimal points for each feature are shown. This 

figure shows how feature computational complexity affects system 

runtime. FFT, DCT, and the wavelet approximations are vectors, but 

max, min, mean and variance are scalars.  

TABLE 3: PARETO OPTIMAL POINTS SUMMARY. THIS TABLE 

SUMMARIZES THE SYSTEM PARAMETERS OF THE HIGHLIGHTED POINTS IN 

FIGURE 4.  NOTE SIMILARITIES IN SIGNAL, FEATURE, FREQUENCY, AND 

FRAME SIZE. THE TWO COMBINATIONS IN BOLD REPRESENT THE TWO 

POINTS IN THE “KNEE” OF THE SOLID RED LINES IN FIGURES 4 AND 5. 

RF 
Norm. 

Time 

Signal 

(axis) 
Feature 

Freq. 

(Hz) 
Frame 

Size 
Window 

Size (s) 

0.036 0.2172 x DCT 100 10 16 

0.086 0.0388 y min 100 20 18 

0.112 0.0359 x mean 100 20 16 

0.146 0.0331 y max 100 20 14 

0.170 0.0330 x min 100 20 14 

0.196 0.0216 x max 100 20 8 

0.270 0.0176 x min 100 20 6 

0.340 0.0172 x max 100 20 6 

0.729 0.0059 x variance 20 20 10 

0.754 0.0056 x variance 20 20 8 

0.775 0.0041 x min 20 20 10 

0.829 0.0037 x mean 20 20 8 

0.878 0.0037 z min 20 20 6 

0.882 0.0032 x mean 20 20 6 

0.938 0.0029 x max 20 20 6 



where Nf is the number of frames per window and D is the 
feature dimension. In our experiments, the feature dimension 
ranges in size from 1 to 20, and the number of frames per 
window ranges from 3 to 200. Low feature dimensions have 
little effect on complexity as the number of frames per window 
increases. However, a high feature dimension has a significant 
impact on computational complexity as the number of frames 
per window increases.  

VIII. CONCLUSION 

We have presented a low power approach to detecting 
activity transitions. The entire framework has several variables 
and has a corresponding large design space. We have shown 
that a few combinations of these variables have been effective 
in detecting transitions in our test cases. We have shown that 
there is a power and accuracy trade-off when selecting 
combinations of variables, namely some combinations are very 
accurate, but they are also computationally complex and use 
more power. Some combinations sacrifice accuracy only 
marginally but are much less computationally complex and 
therefore more power efficient. Previous work in activity 
recognition has focused on decreasing the sampling frequency 
to conserve power. Here we have shown that the feature, or 
more specifically the dimension of the feature, extracted from 
the signal has a significant impact on the computational 
complexity and power consumption of the system. 

Future work will need to show whether these combinations 
and this framework for detecting activity transitions scales to 
activities beyond what we’ve tested. It may be that the simple 
features worked well for the small set of activities we tested 
because their signal signatures were sufficiently distinct from 
one another. More complex features may be necessary as the 
number of activities and transitions increases. Also, future 
work will test whether the same combination of variables that 
detect transitions can also correctly classify what activity is 

taking place. The method presented here only detects that a 
transition occurs, not what the person has transitioned from or 
to. It may be the case that a low-power activity detection 
system uses simple features on one signal to detect a transition, 
but then needs to use a more complex feature on multiple 
signals to classify the activity. 
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IX. APPENDIX 

This appendix describes the derivation of the ratio test’s 
complexity, seen in Equation 9. Let D be the dimensionality of 
the feature we are analyzing. Let Nf be the number of frames 
per window. Calculation of the probability p in Equation 1 

involves calculating the mean feature vector (µµµµ) and 

covariance matrix (ΛΛΛΛ) across the entire window. The 

complexity of µµµµ is O(D·Nf), because features are calculated per 
frame and each dimension of the feature is averaged. The 

complexity of ΛΛΛΛ is O(D
2
·Nf). The calculation of p also 

involves calculating ΛΛΛΛ
-1

, which has complexity O(D
3
) since 

the best known algorithms to calculate the inverse of a matrix 
are cubic. The complexity for calculating p can now be 
simplified to O(D

3
)+O(D

2
·Nf). 

 

Figure 6. The Relationship between Frames per Window, Feature 

Dimension and Computational Complexity. Complexity increases 

sharply with the number of frames per window when feature 

dimension in high, but is relatively flat when feature dimension is low. 


