PathSeeker: A Fast Mapping Algorithm for CGRAs

Mahesh Balasubramanian and Aviral Shrivastava
Make Programming Simple Lab, Arizona State University, Tempe, AZ
Email: {mbalasubramanian, aviral.shrivastava} @asu.edu

Abstract—Coarse-grained reconfigurable arrays (CGRAs) have
gained traction over the years as a low-power accelerator due
to the efficient mapping of the compute-intensive loops onto
the 2-D array by the CGRA compiler. When encountering a
mapping failure for a given node, existing mapping techniques
either exit and retry the mapping anew, or perform backtracking,
i.e., recursively remove the previously mapped node to find a
valid mapping. Abandoning mapping and starting afresh can
deteriorate the quality of mapping and the compilation time. Even
backtracking may not be the best choice since the previous node
may not be the incorrectly placed node. To tackle this issue, we
propose PathSeeker — a mapping approach that analyzes mapping
failures and performs local adjustments to the schedule to obtain
a mapping. Experimental results on 35 top performance-critical
loops from MiBench, Rodinia, and Parboil benchmark suites
demonstrate that PathSeeker can map all of them with better
mapping quality and dramatically less compilation time than the
previous state-of-the-art approaches — GraphMinor and RAMP,
which were unable to map 20 and 5 loops, respectively. Over
these benchmarks, PathSeeker achieves 28% better performance
at 550x compilation speedup over GraphMinor and 3% better
performance at 10x compilation speedup over RAMP on a 4x4
CGRA.

Index Terms—Compilers, Reconfigurable Architectures, CGRA,
Mapping.

I. INTRODUCTION

The advancement of Internet and data collecting devices
have increased the demand for high-performance, low-power
computing alternatives. All mobile devices collect, process,
and communicate data. Analyzing the collected data to extract
meaningful information is compute-intensive [1] and often
limited by the thermal, power and resource constraints [2].
Coarse-Grained Reconfigurable Arrays (CGRAs) are promising
accelerators that provide high efficiency at low power [3], [4].
A CGRA consists of a simple 2-D grid of Processing Elements
or PEs. Each PE contains Functional Units (FUs) that can
receive instructions from the instruction memory, compute
arithmetic operations with the data received from the data
memory or the neighboring PEs. Each PE consists of MUXes
to select the inputs from its neighbors and a register file to store
intermittent data. Prime examples of CGRAs are accelerators
like Eyeriss [5], DianNo [6], Marvel [7], that have been used
for power-efficient acceleration of machine learning models like
Convolution Neural Networks (CNNs), Deep Neural Networks
(DNNs) etc.

In order to achieve the high performance and highly power-
efficient operation of CGRAs good compilers are needed, which
will be able to obtain a good quality mapping of performance-
critical loops from applications. CGRA compilers can be classi-
fied into two categories: (1) Parallel-loop compilers, (2) Modulo

Scheduling-based compilers. The parallel-loop compilers like
the ones for [5], [7] employ various compiler optimizations
to exploit the inherent spatial and temporal parallelization
strategies to map parallel loops of an application onto the
PEs of the accelerator [7]. However, not all the compute-
intensive loops of an application may be parallel, and those
can be accelerated through modulo scheduling-based compilers.
Modulo-scheduling based compilers accelerate the data flow
graph of the loop body through the pipelining present in the
CGRAs using software pipelining [4], [8]-[14]. This paper
focuses on the modulo scheduling-based compiler techniques
that can support a wide variety of application loops.

One of the biggest limitations of the existing modulo
scheduling-based state-of-the-art CGRA mapping techniques is
that, when trying to map loops onto the CGRA if a mapping
attempt fails, these techniques either discard the current map-
ping and restart anew or backtrack to the previously mapped
node. Techniques that restart do not learn anything from the
failure, and just blindly explore the mapping space. Even the
backtracking based approaches may not be effective, as they
recursively unmap the last mapped node, while the last node
may not be the one that is making the mapping infeasible. As a
result, existing modulo scheduling-based state-of-the-art CGRA
mapping techniques are unable to map some performance-
critical loops even after 27 hours! This not only exacerbates the
compilation time, but given reasonable limits on compilation
time, it also negatively impacts the quality of the mapping
achieved by these techniques.

To address these concerns, in this paper, we present a novel
mapping algorithm - PathSeeker. First, instead of backtracking
or restarting the mapping like the previous mapping methods,
PathSeeker analyzes the predecessor and successor nodes to
find the reason behind the failed mapping. Second, PathSeeker
explores local transformations for the predecessor and succes-
sor of the failed node to achieve a valid mapping. Finally,
when local transformations do not yield a valid mapping,
different PE positions of the other nodes in the time-slot of
the failed node, the predecessor, and successor are iteratively
explored, to find a valid mapping. We compare the mapping
quality generated by PathSeeker to that of GraphMinor [11]
and RAMP [12], which are state-of-the-art mapping algorithms
in backtracking and restart, respectively. Experimental results
on 35 application loops from the top three benchmark suites,
MiBench [15], Rodinia [16], and Parboil [17] show that (i)
PathSeeker can map all the 35 application loops on 4 x4 CGRA,
whereas GraphMinor and RAMP were not able to map 20
and 5 loops, respectively, (ii) PathSeeker achieves a better

quality of mapping at lower compilation time with 550x and
10x compilation time speedup over GraphMinor and RAMP
respectively, (iii) PathSeeker scales well across different sizes
of CGRA.

II. RELATED WORKS

In the context of response to a mapping failure, the existing
modulo scheduling-based CGRA compiler techniques can be
classified into two categories, i) restart and ii) backtrack.
Genetic algorithms, simulated annealing [18], [19], minimum
common subgraph (MCS) [9] or maximal clique [10], [12]
based techniques can be classified as restart. Minimum common
subgraph and maximal clique techniques discard the mapping
on failure and search for another mapping. Simulated Annealing
techniques try random time-slot and PE placements for the
failed nodes, generally, having higher compilation times [20].

GraphMinor [11], RAMS [21], and BMS [20] perform
backtracking on a mapping failure. RAMS and BMS form
clusters from the DFG and map the clusters one-by-one. When
the algorithm is unable to find a mapping for a node, the current
cluster mapping is discarded, and the algorithm backtracks to
the cluster that was mapped prior. However, GraphMinor maps
the DFG by prioritizing nodes based on the critical path, one
node at a time, and uses an exhaustive search technique. On
a failure, GraphMinor backtracks to the previously mapped
node in the mapped order. Essentially, GraphMinor un —maps
the last mapped node and tries again by mapping that node
to a different place (PE). If that does not work, it continues
to un-map the nodes in the reverse order in which they were
mapped and keeps trying. However, the last node mapped may
not be the problematic node. Even if that last node were re-
mapped, it might not enable a valid mapping. HyCube [4]
proposes a mapping technique for a highly connected CGRA
that uses a multi-hop multi-cast path system to communicate
data in a single cycle. HyCube’s single-cycle communication
may provide better II', but at the cost of scalability. Since the
interconnect crossbar selection is a part of HyCube’s instruction
set, which negatively impacts the power and performance as the
CGRA size increases.

III. MOTIVATING EXAMPLE

In GraphMinor [11], the order in which the nodes are mapped
plays an important role in determining the compilation time.
GraphMinor sorts the nodes of the DFG in the order of the
critical paths and cycles [11]. Fig. 1(c) shows a mapping failure
of node 2 due to unavailability of connected PEs (connected
resource for PE1 and PE3 is PE2 that is occupied by r).
GraphMinor backtracks to previously mapped node 6, which
does not affect the mapping of 2. It checks all the different
mapping for 6 and on a failure to find a valid mapping
for 2, GraphMinor backtracks to nodes 0 and 5. Node 0
is the predecessor of node 2 but the problem does not lie
there. GraphMinor does not find a valid mapping for 2, so
it backtracks again to node 1, and node 3, for which it cannot

In modulo scheduling, the interval in which successive iterations can begin
execution is called the Initiation Interval (II) [22], which is the performance
metric.

PE1 PE2

Time

PE3 PE4

oy
ol

LG
|1H2H3H4|T+1@Lm
ol [l

° T ‘r N
9 A/ - \/
(a) (b) (c)

G [

Fig. 1. a) DFG of an application loop. (b) A 1x4 CGRA target architecture.
(c) Failure to map node 2 by GraphMinor

find a valid mapping for node 2. After backtracking through all
the mapped nodes, GraphMinor reaches 4 wherein the actual
problem lies. Now remapping node 4 will yield in a mapping.
GraphMinor fails to identify that the problem was one step
away — remapping node 4 would have fixed the mapping in the
first attempt. Due to the exhaustive nature of the GraphMinor
algorithm, the compilation time increases exponentially with
an increase in DFG size (compute intensive section with more
nodes and recurrences) and CGRA size.

The aim of RAMP [12] is to find the optimal routing between
two operations that are scheduled more than one cycle apart by
the scheduler. The core algorithm for finding PE for a node in
the DFG is the maximal clique algorithm?>. RAMP takes three
steps to resolve all the routing issues and find a maximal clique.
On every attempt, RAMP tries to find a maximal clique, and an
increase in DFG size due to the addition of routing resources
also increases the mapping search time. Another drawback
of the RAMP is that it does not isolate the failed mapping.
The maximal clique algorithm is time-consuming, O(N®) [12],
[23], where N is a product of nodes in DFG and CGRA size.
Restarting the algorithm on every failure will possibly lead to
a longer compilation time.

As illustrated, the existing mapping approaches do not solve
the mapping failure by targeting the failed node and hence
suffers from poor performance or increased compilation time
to converge at a valid mapping. Given the NP-completeness
nature of the mapping, we will never know if these techniques
will produce a mapping within a finite time. The objective
of PathSeeker is to achieve a good quality mapping within a
limited amount of time for all the application loops considered
across various sizes of CGRA.

IV. PATHSEEKER

A driver function® calls the PathSeeker mapping routine
to map the scheduled operations. The PathSeeker algorithm is
shown in Algorithm 1. Lines 1-3 initialize an empty queue and
pushes the node v into the queue. For a given node v chosen

2We do not illustrate the RAMP working due to the complex nature of
the maximal clique algorithm and the optimal routing algorithm. We point
the readers to [23] for the maximal clique algorithm and [12] for the optimal
routing algorithm.

3For brevity, the driver algorithm is not shown, but is very similar to
the driver function ScheduleAndMap of GraphMinor [11] using Modulo
Resource Routing Graph (MRRG).

Algorithm 1: PathSeeker (List AList, Node v)

1 Initialize empty queue;

2 visited[v] = true;

3 queue.push(v);

4 while (queue # empty) do

v = queue. front();

queue.pop(v);

if is_already_mapped(v) then
L continue;

9 P + Get_Mapped_Pred(v);

10 S + Get_Mapped_Succ(v);

1 I' < Get_Connected_PEs(v, P, S);
12 if I'.size() = 1 then

13 | PE«T(0);

14 else if I".size() > 1 then

15 L PE < T'(Rand(T.size());

e N & wn

16 else

17 if Localized_Search(v, P, S) # true then

18 if Recovery_Level_One(v, P, S) # true

then

19 if
Recovery_Level_Two(v, P, S) # true
then

20 L return failure;

21 SetMappablePositions(v,T) ;
22 SetCurrentPosition(v, PE) ;

23 for i in AList[v] do

24 if visited[i] # O then
25 visited[i] = true;
26 L queue.push(i);
27_return success

from lines 5, lines 7 and 8 check if the node has been already
mapped. The algorithm continues further only if the node is not
mapped, otherwise the next node in the queue is selected. Lines
9 and 10, Get_Mapped_Pred() and Get_Mapped_Succ()
routines, return only the predecessors and successors of the
current node that are already mapped. Get_Connected_PEs()
function, in line 11, returns all the possible free PEs that
are connected to the mapped predecessor and successors from
the Modulo Resource Routing Graph (MRRG). PathSeeker
starts the mapping in a reverse breadth-first search graph
traversal (using an adjacency list AList) to aid the mapping
of predecessors easily. This design decision was taken by
analyzing the loops considered for the experiments. Since the
nodes are already scheduled to a time-slot before mapping,
taking a reverse breadth first search (BFS) approach will aid
the mapping of predecessor node with fewer mapping failures.
On the contrary, when we analyzed the breadth first search with
predecessors mapped first followed by the successor nodes, due
to the random placement of the predecessors, there was a high
chance that the predecessor nodes are placed in non-connected

Algorithm 2: Localized_Search(Node v, Predecessor
P, Successor S)

1 timeslot «+ Get_Modulo_Schedule_Time(v)
2 mapped_pred_succ + P.size() + 5.Size()

3 succ_map_set < &

4 pred_map_set < &

5 v_pe « Get_Free_PFEs(timeslot)

6 for i in v_pe do

7 for j in S do

8 s_pe < GetMappable Positions(j)

9 for jj in s_pe do

10 for k in P do

11 p_pe + GetMappablePositions(k)
12 for kk in p_pe do

13 if connected PEs(i, kk,jj) then
14 T.insert(q)

15 succ_map_set.insert(k)

16 pred_map_set.insert(j)

17 store_connected_pes(i, kk, jj)

18 if I'.size() = 0 then
19 L return false

20 Update I' and PE values
21 return success

PEs, which resulted in a successor node mapping failure.

Based on the size of the I' from line 11, the placement (PFE)
for the node v is chosen. If I size is one then that PE is chosen
in line 13, or if more than one possible PE positions are avail-
able a random PFE is chosen from line 15. An empty [' means
that there were no possible placements available for the node
v. At this juncture, PathSeeker employs a three-tier recovery
approach to find a valid placement for node v. In line 17, the
Localized_Search() routine is invoked. On a failure of this
routine, in line 18 Recovery_Level_One() routine is called.
On a Level One failure, Recovery_Level_Two() routine is
employed, in line 19. The Level One and Level Two routines
use complex time-slot level remapping procedures to find a
valid mapping for node v. All the three recovery methodologies
are explained in detail in the following subsections. In an
event of all three recovery failures, the PathSeeker algorithm
is restarted for the given II. When a valid mapping is found,
all the possible placements i.e., I', and the selected PE are
stored for recovery purposes by Set M appable Positions() and
SetCurrentPosition() routines, respectively in lines 21 and
22. Line 23-26 selects the next adjacent node to v and adds it
to the queue to continue the mapping procedure.

On a failure to map a node PathSeeker invokes the
Localized_Search() algorithm shown in Algorithm 2. The
algorithm searches through the possible positions of the pre-
decessors and the successors to find a valid placement for
the failed node. Lines 6-17 search through both predecessors’
and successors’ possible positions when there are mapped
predecessors and successors for the failed node. This localized

PE1
Time

lflo

T

,l\
Cr)
VY,

PE2 PE3

Ti+1

8\C
EHEr]

v

Fig. 2. (a) Mapping failure due to GraphMinor. (b) PathSeeker’s localized
modifications results in a valid mappin faster.

search routine does not modify any other nodes that are already
mapped onto the CGRA. The GetM appable Positions() func-
tion in lines 8 and 11 retrieves the possible PE positions stored
in line 21 in Algorithm 1. On finding a successful connected
PE, the PE position for node v (failure node) is store into I
array. A valid mapping is obtained for node v only if all the
predecessors and successors have a connected PE to v. Lines
16 and 17 updates the predecessor nodes and successor nodes,
which is used to check if all the predecessors and successors
were able to successfully find a connected PE. On failure of
this localized search (when I"s size is 0), PathSeeker invokes
the Recovery_Level_One() routine, from Algorithm 1, line
18. Lines 10 and 12 are modified when the failed node does
not have a predecessor mapped.

The Recovery_Level_One() routine employs the novel
timeslot level remapping. The remapping starts by collecting
all the nodes mapped to current timeslot as that of the failed
node. Next, the remapping algorithm iterates over the mappable
positions of each node and remaps them. On remapping each
node, the valid position for the failed node is checked. This
local rearrangement of the already mapped nodes to the timeslot
is the novelty of PathSeeker, and it helps to change the course
of the mapping. On a successful mapping of the failed node, the
current remapping of the nodes is finalized and their positions
are updated.

Algorithm 1 line 19, calls the Recovery_Level _Two()
routine on a Level One failure. Developed from Level One,
the Recovery_Level_Two() algorithm, not only remaps the
nodes in the failure node’s (node v) timeslot, but also remaps
the nodes present in the successors’ and the predecessors’
timeslots. On a Recovery Level Two failure, the PathSeeker
algorithm restarts with a new design space to be explored.

V. RUNNING EXAMPLE

Fig. 2(a)&(b) shows the working of the PathSeeker technique
on a failure to map node 2. Fig. 2(a) shows the failure to
map node 2 encountered by GraphMinor. For the failure in
Fig. 2(a), PathSeeker’s Localized_Search function is invoked
first which gets the predecessors and successors of failed node
2, i.e., node 0 and node 4, respectively. PathSeeker iterates
through all the possible positions to find a valid mapping
of the successor, and consecutively the predecessor. There

is just one possible position for node 4, i.e., PE3, which
meets all the dependencies. A valid mapping by PathSeeker
for this failure case is shown in Fig. 2(b). PathSeeker calls the
Localized_Search to modify the path mapping of 4 to find
a valid mapping for 2. It can be observed that PathSeeker’s
Localized_Search does not modify the placements of other
mapped nodes and instead only explores within the existing
mapping. In a hypothetical case where there is no possible
mapping available for node 2, Level One recovery routine will
be called to remap the nodes in time-slot T;;. On a failure
to find a valid mapping from Level One recovery, Level Two
recovery function will be called to remap the nodes in time-slot
T;+2 and subsequently the nodes in time-slot T;, which are the
successor and predecessor time-slots of node 2. While previous
techniques explore the design space on a node-by-node basis,
PathSeeker explores the mapping space on a time-slot level.

VI. EXPERIMENTAL RESULTS

Setup: We profiled applications from three widely used
benchmark suites* MiBench [15], Rodinia [16], and Par-
boil [17]. These benchmarks depict a wide variety of applica-
tion domains comprising of embedded system applications like
automotive, industry, office, network, security, and telecommu-
nication, heterogeneous applications like data mining, pattern
recognition, image processing, graph algorithms, and high
performance computing application like spare matrix-dense
vector multiplication (spmv). Compilation: The extraction of
loops and converting them to Data Flow Graph (DFG) were
performed using CCF [24], an LLVM 4.0 [25] based CGRA
compilation and simulation framework. We have implemented
partial predication [26], for compiling loops with conditionals.
We have also implemented path-sharing, proposed in Graph-
Minor [11]. RAMP [12], GraphMinor [11], and PathSeeker
(proposed technique) mapping algorithms as passes in CCFE
We compiled the application loops with optimization level 3,
to avoid those loops that are vectorizable by the compiler. We
scaled the three mapping algorithms across five CGRA sizes,
namely 4x4, 5x5, 6x6, 7x7, and 8x8 for scalability. We
avoided loops with system calls as they cannot be accelerated
on CGRA.

A. PathSeeker maps all the loops on 4x4 CGRA at a lower I

Fig.3 and Fig. 4 shows the performance comparison of
PathSeeker with GraphMinor and RAMP. The values were
recorded by executing PathSeeker, RAMP and GraphMinor on
an Intel-i7 running at 2.8 GHz with 16 GB memory. A 4x4
CGRA was used for this experiment. The compilation time
threshold was kept at 100,000 seconds®. It can be inferred
from Fig.3 and Fig. 4 that PathSeeker, with its novel remapping
scheme was able to map all the 35 loops considered, whereas
GraphMinor and RAMP were not able to map 20 and 5 loops,
respectively. The loops for which a valid mapping cannot be

4Top two performance-critical loops were chosen from each application, with
each contributing > 7% of the execution time of the application when executed
with standard inputs that were shipped with the benchmark suites.

5A 100,000 seconds threshold time is 27 hours, more than a day to find a
valid mapping.

= 6 B G-Minor RAMP B PathSeeker X No Mapping Obtained
N N A
9] N N
= N
- NN NI IS NN
ko R N Y Y T O S VR N) v D
2 & & K& $ & @S T EE S
£ & & Xz RS QS > S < < 3 3
OIS S ¥ O S RN
N & E S Y BRI
©oe L L L P
P & ¢ & &
Rodinia

Fig. 3. Performance (II) comparison of PathSeeker with GraphMinor (G-Minor) and RAMP for application loops from Rodinia on a 4x4 CGRA.
~ 16 B G-Minor RAMP B PathSeeker X No Mapping Obtained
= Q|
= 12 %
2 g §
9 N
£ 4 % H
s, ona ANE xN xNE xNE HNe = ENs
& < Q
- N S&’ & N . \,o 6'» S.\'
= > & L,\f”b QQ@ N P ?

,6{&
MiBench Parboil

Fig. 4. Performance (II) comparison of PathSeeker with GraphMinor (G-Minor) and RAMP for application loops from MiBench and Parboil on a 4x4 CGRA.

S
o

BG-Minor RAMP B PathSeeker

w
o

No. of Loops Mapped
[y N
o o

o

Sizes of CGRA

Fig. 5. PathSeeker achieved a valid mapping for the all the 35 loops across
various sizes of CGRA.

obtained within 100,000 seconds are denoted by “X” in the
Fig. 3 and Fig. 4.

The II obtained from GraphMinor and RAMP are not always
optimal (lower II is better). This can particularly be noted
in loops such as kmeans2, nnl, histo and sadl where
GraphMinor had higher II, and particle filter2, myocyte2,
histo, and sad2 for which RAMP had higher II. Considering
the loops for which the GraphMinor has obtained a valid
mapping, PathSeeker showed a 28% lower II. Compared to
RAMP, PathSeeker achieved a comparable performance in all
the loops and had better performance in five loops mentioned
above.

B. PathSeeker maps all the loops across all the CGRA sizes
with a better quality.

We performed the scalability experiment for CGRA sizes
of 5x5, 6x6, 7x7, and 8x8. Fig 5, shows the scalability of
PathSeeker with respect to GraphMinor and RAMP. We can ob-
serve that as the size of the CGRA increases the number loops
mappable by GraphMinor and RAMP reduces. PathSeeker, on

Juny

L/‘_‘

0.98
0.96
0.94
0.92

A
1)

o
©

0.88

0.86 -@-RAMP -A-PathSeeker

Quality of Mapping (MII/I1)

4x4 5x5 6x6

Sizes of CGRA

7x7 8x8

Fig. 6. PathSeeker achieves a superior mapping quality (II closer to MII)
compared to RAMP.

the other hand, is able to achieve a valid mapping for all
the 35 loops considered. Due to the backtracking mechanism,
GraphMinor was not able to find a mapping within the threshold
of almost 75% of the loops. Fig 5 clearly shows that arbitrary
backtracking to the previously mapped nodes on encountering
a mapping failure is not a scalable solution.

The Minimum II (MII) is the minimum possible II that can
be achieved for a given loop DFG and the CGRA architecture.
The quality of mapping of a mapping algorithm is the ratio of
MHI , which indicates how close the obtained II is to the MII.
Fig 6, shows the quality of mapping of RAMP and PathSeeker
across all the five CGRA sizes. GraphMinor was not considered
due to its inability to find a mapping for more than 70% of the
loops. The mapping quality achieved by PathSeeker is better
and consistent across all the CGRA sizes, compared to RAMP.

C. PathSeeker is a fast mapping algorithm.

Fig. 7, shows the scaling of average compilation times of
RAMP and PathSeeker, considering only the loops that were
mappable by RAMP. The y-axis of Fig. 7 shows the average

c 1000 RAMP @ PathSeeker
S
2
i)
g_ E 100
St

= B
g 1 =
& =
s
< 1

00

Sizes of CGRA

Fig. 7. PathSeeker achieves a mapping for all the loops across various sizes
of CGRA at a lower compilation time.

compilation time across all the benchmark loops for which
RAMP was able to achieve a valid mapping, in log scale, and
the x-axis shows the various sizes of the CGRA. As shown in
Fig. 7, the compilation time of RAMP increases exponentially,
due to the restart mechanism on encountering a failure and its
algorithmic complexity. In comparison, the compilation time
of PathSeeker scales linearly, due to the initial randomized
placement of the nodes and localized modifications of the
mapping pertaining to the failed nodes.

VII. SUMMARY

This paper presented a novel CGRA mapping scheme,
PathSeeker, that was able to map all the loops in a smaller
CGRA size, with better II and lower compilation time. Ex-
isting techniques, such as GraphMinor and RAMP, resort to
backtracking to a previously mapped node or restarting the
mapping process, when encountering a mapping failure. This
leads to a significant increase in the compilation time and
poor II. PathSeeker’s novelty lies in employing localized search
strategies and time-slot level remapping to rectify a mapping
failure. PathSeeker was able to map all the 5 top performance-
critical loops across three widely used benchmark suite loops on
a 4x4 CGRA, whereas GraphMinor and RAMP were not able
to map 20 and 5 loops on the same CGRA size, respectively.
On comparing the loops that were mappable by GraphMinor
and RAMP, PathSeeker achieved a 28% lower II compared
to GraphMinor and 3% lower II compared to RAMP on a
4x4 CGRA. PathSeeker was able to get a 550x and 10x
compilation time improvement compared to GraphMinor and
RAMP, respectively.

ACKNOWLEDGMENT

This work was partially supported by National Science
Foundation grant CPS 1645578.

REFERENCES

[1] National Research Council et al.
National Academies Press, 2013.

[2] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur
Cetintemel, and Stanley B Zdonik. Tupleware:” big” data, big analytics,
small clusters. In CIDR, 2015.

[3] Frank Bouwens, Mladen Berekovic, Bjorn De Sutter, and Georgi Gay-
dadjiev. Architecture enhancements for the adres coarse-grained re-
configurable array. In International Conference on High-Performance
Embedded Architectures and Compilers, pages 66-81. Springer, 2008.

[4] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan
Peh. HyCUBE: A CGRA with Reconfigurable Single-Cycle Multi-Hop
Interconnect. In Proceedings of the 54th Annual Design Automation
Conference 2017, pages 1-6, 2017.

Frontiers in massive data analysis.

[5]

[6

[t}

(71

[8

[

[9

—

[10]

(1]

[12]

[13

—

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks.
ACM SIGARCH Computer Architecture News, 44(3):367-379, 2016.
Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam.
DianNao family: energy-efficient hardware accelerators for machine
learning. Communications of the ACM, 59(11):105-112, 2016.

Prasanth Chatarasi, Hyoukjun Kwon, Natesh Raina, Saurabh Malik,
Vaisakh Haridas, Angshuman Parashar, Michael Pellauer, Tushar Krishna,
and Vivek Sarkar. Marvel: A data-centric compiler for dnn operators on
spatial accelerators. arXiv preprint arXiv:2002.07752, 2020.

Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and
Rudy Lauwereins. Exploiting loop-level parallelism on coarse-grained
reconfigurable architectures using modulo scheduling. /EE Proceedings-
Computers and Digital Techniques, 150(5):255, 2003.

Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. EPIMap: using
epimorphism to map applications on cgras. In Proceedings of the 49th
Annual Design Automation Conference, pages 1284-1291. ACM, 2012.
Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. REGIMap:
Register-aware application mapping on coarse-grained reconfigurable ar-
chitectures (cgras). In Proceedings of the 50th Annual Design Automation
Conference, page 18. ACM, 2013.

Liang Chen and Tulika Mitra. Graph minor approach for application
mapping on cgras. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 7(3):21, 2014.

Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. RAMP:
resource-aware mapping for CGRAs. In Proceedings of the 55th Annual
Design Automation Conference (DAC), 2018.

Hyunchul Park, Kevin Fan, Manjunath Kudlur, and Scott Mahlke. Modulo
graph embedding: mapping applications onto coarse-grained reconfig-
urable architectures. In Proceedings of the 2006 international conference
on Compilers, architecture and synthesis for embedded systems, pages
136-146. ACM, 2006.

Hyunchul Park, Kevin Fan, Scott A Mahlke, Taewook Oh, Heeseok Kim,
and Hong-seok Kim. Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, pages
166-176. ACM, 2008.

Matthew Guthaus et al. Mibench: A free, commercially representative
embedded benchmark suite. In WWC, 2001.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite
for heterogeneous computing. In 2009 IEEE international symposium on
workload characterization (IISWC), pages 44-54. Teee, 2009.

John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen
Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil:
A revised benchmark suite for scientific and commercial throughput
computing. Center for Reliable and High-Performance Computing, 127,
2012.

B Mei, M Berekovic, and JY Mignolet. Adres & dresc: Architecture and
compiler for coarse-grain reconfigurable processors. In Fine-and coarse-
grain reconfigurable computing, pages 255-297. Springer, 2007.

Akira Hatanaka and Nader Bagherzadeh. A modulo scheduling algorithm
for a coarse-grain reconfigurable array template. In Parallel and Dis-
tributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1-8. IEEE, 2007.

Panagiotis Theocharis and Bjorn De Sutter. A bimodal scheduler for
coarse-grained reconfigurable arrays. ACM Transactions on Architecture
and Code Optimization (TACO), 13(2):1-26, 2016.

Taewook Oh, Bernhard Egger, Hyunchul Park, and Scott Mahlke. Recur-
rence cycle aware modulo scheduling for coarse-grained reconfigurable
architectures. In ACM Sigplan Notices, volume 44, pages 21-30. ACM,
2009.

B Ramakrishna Rau. Iterative modulo scheduling. International Journal
of Parallel Programming, 24(1), 1996.

Ashay Dharwadker. The clique algorithm, 2006.

Shail Dave and Aviral Shrivastava. Ccf: A cgra compilation framework,
2018.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO, 2004.

Kyuseung Han, Junwhan Ahn, and Kiyoung Choi. Power-efficient
predication techniques for acceleration of control flow execution on
cgra. ACM Transactions on Architecture and Code Optimization (TACO),
10(2):8, 2013.

