
1

CRIMSON: Compute-intensive loop acceleration by
Randomized Iterative Modulo Scheduling and

Optimized Mapping on CGRAs
Mahesh Balasubramanian, Member, IEEE, and Aviral Shrivastava, Member, IEEE

Abstract—CGRAs are emerging accelerators that promise low-
power acceleration of compute-intensive loops in applications.
The acceleration achieved by CGRA relies on the efficient map-
ping of the compute-intensive loops by the CGRA compiler, onto
the CGRA architecture. The CGRA mapping problem, being NP-
complete, is performed in a two-step process namely, scheduling
and mapping. The scheduling algorithm allocates timeslots to
the nodes of the DFG, and the mapping algorithm maps the
scheduled nodes onto the PEs of the CGRA. On a mapping
failure, the II is increased and a new schedule is obtained for the
increased II. Most previous mapping techniques use the Iterative
Modulo Scheduling algorithm (IMS) to find a schedule for a given
II. Since IMS generates a resource-constrained ASAP (as-soon-as-
possible) scheduling, even with increased II, it tends to generate
a similar schedule that is not mappable. Therefore, IMS does not
explore the schedule space effectively. To address these issues, this
paper proposes CRIMSON, Compute-intensive loop acceleration
by Randomized Iterative Modulo Scheduling and Optimized
Mapping technique that generates random modulo schedules by
exploring the schedule space, thereby creating different modulo
schedules at a given and increased II. CRIMSON also employs a
novel conservative test after scheduling to prune valid schedules
that are not mappable. From our study conducted on the
top 24 performance-critical loops (run for more than 7% of
application time) from MiBench, Rodinia, and Parboil, we found
that previous state-of-the-art approaches that use IMS such as
RAMP and GraphMinor could not map five and seven loops
respectively, on a 4×4 CGRA, whereas CRIMSON was able to
map them all. For loops mapped by the previous approaches,
CRIMSON achieved a comparable II.

Index Terms—Compiler, Coarse-grained Reconfigurable Ar-
rays, Modulo Scheduling, Randomized Scheduling.

I. INTRODUCTION

COMPUTING demands in human society continue to
climb. Today there are numerous devices that collect,

process, and communicate data from multiple sources such
as the Internet, Cyber-Physical and Autonomous Systems,
sensor networks, etc. [1]. Extracting intelligent and actionable
information from all these data – whether or not done by
machine learning – is extremely compute-intensive, and often
times limited by power, thermal, and other resource constraints
[2]. Efficiency in the execution of these functionalities can
be achieved by using Application-Specific Integrated Circuits
(ASIC). However, they suffer from high production costs, and
they quickly become obsolete as applications and algorithms
evolve. Another promising alternative is Field Programmable
Gate Arrays or FPGAs, but they lose efficiency in providing
bit-level configurability, which is essential for their primary

PEPE

PE PE

PEPE

PE PE

PEPE

PE PE

PEPE

PE PE

In
st

ru
ct

io
n

M
em

or
y

Data Memory

Select from neighbors or self

Output to self/neighbors

FU
Register

File

Fig. 1: A typical CGRA architecture consisting of 4x4 PEs
connected in a 2D mesh. Every cycle, each PE gets an
instruction from the Instruction Memory, and can operate on
the outputs of neighboring PEs and/or the Data Memory.

purpose – prototyping [3]. Coarse-grained reconfigurable ar-
chitectures or CGRAs provide a very good middle ground with
coarse-grain configurability (word and arithmetic operator-
level), without much loss in power-efficiency when compared
to ASICs [4]. As a result, there is a renewed surge in
the application of CGRAs for compute-intensive workloads
including machine learning, embedded systems, and vision
functionalities [5]–[7].

As shown in Fig 1, CGRAs are simply an array of Process-
ing Elements (PE) arranged in a 2-D grid. The PEs are just
bare Arithmetic Logic Units (ALU) that can receive inputs
from the neighboring PEs, from the Data Memory, and its
own small set of registers. Every cycle, the PEs receive an
instruction from the Instruction Memory, and write the results
to the output buffer, local register file, and/or the data memory.
CGRA-based execution is highly parallel (16 operations can
be executed simultaneously on a 4×4 CGRA) and power-
efficient because instructions are in the pre-decoded form.
There is no extensive pipeline for instructions to go-through
before and after execution, and the PEs can exchange operands
directly rather than going through the register files. Some of
the early works on CGRA architecture include ADRES [3],
PADDI [8], Kressarray [9], MATRIX [10], Morphosys [11],
and Remarc [12]. ADRES [3] which showed CGRAs to be
promising power-efficient accelerators with power efficiency
of 60 GOps/W using a 32 nm technology.

The most common way to use CGRAs is to employ them
as co-processors to CPU cores or processors, to speed up

2

and power-efficiently execute compute-intensive applications
– similar to GPUs. The execution of compute-intensive loops
in the application can then be“offloaded” onto these CGRA
co-processors, while the rest of the application can still ex-
ecute on the CPU. This heterogeneous computing paradigm
requires compiler support to map compute-intensive loops of
the application onto the PEs of the CGRA. Since the execution
of a loop happens by software-pipelining on a CGRA, the
objective of mapping is to layout the nodes of the DFG onto
a graph of the CGRA extended in time, so that the nodes can
exchange the operands through the interconnection among the
PEs and achieve correct and efficient execution. The repetition
interval of the mapping (the time at which the next iteration
of the loop can start) is called the Initiation Interval (II) and
is the metric that determines the quality of mapping. Many
techniques have been proposed to solve NP-complete [13]
mapping problem of CGRAs efficiently [13]–[20]. Most of
the newer methods work in these four steps: i) create the
Data Flow Graph (DFG) of the loop, and estimate the minimal
II, ii) create the CGRA graph unrolled II times, iii) schedule
the nodes of the loop onto the CGRA graph, and finally, iv)
map the nodes onto the PEs at their scheduled timeslots such
that the dependencies among the nodes can be transferred
through the connectivity among PEs. In case a valid mapping
is not found, the II is increased, and steps from ii) onward are
executed again. This process is repeated until a valid mapping
is found. A mapping failure can occur in the fourth step due
to the limited connectivity among the PEs of the CGRA,
and because of the need to map new routing nodes. Routing
nodes occur when dependent operations are scheduled in non-
contiguous timeslots. In this case, the operands need to be
routed from the PE on which the source operand is mapped,
to the PE on which the destination operation is mapped. This
is commonly referred to as the routing problem. One solution
is to route the operands through the PEs in the intermediate
timeslots. Since routing and mapping attempts often fail,
existing CGRA mapping techniques have heavily focused on
solving the problem encountered in the mapping and routing
step. For example, [16], [17] route dependencies via PEs, [19]
routes dependencies through the registers inside the PEs, [18]
overlaps the routing paths carrying the same value, and [13]
uses recomputation as an alternative to routing. MEMMap [21]
routes dependent operations via data memory by adding store
and load nodes. RAMP [20] proposes a heuristic to explore
all the different routing options. However, all the previous
approaches use the same Iterative Modulo Scheduling (IMS)
[22] to find a valid schedule – and therein lies the problem.

The problem with IMS is that it generates a resource-
constrained, As Soon As Possible (ASAP) schedule of nodes
onto the CGRA PEs. When a mapping is not found, the
traditional mapping techniques increase the II, and return to
the scheduling step. The generated schedule does not change
much, even when more resources are added towards the bottom
of the CGRA graph. The resource-constrained ASAP schedule
will be almost identical to the one obtained before, and the ex-
tra resources are not used! As a result, the mapping algorithm
keeps on exploring the schedule space with the same schedule,
and often no mapping can be found, even after huge increases

Suites Loops 4x4
MII RAMP-II GraphMinor-II

MiBench

bitcount 3 3 6
susan 2 3 3
sha 3 3 3

jpeg1 3 X X
jpeg2 2 X X

Rodinia

kmeans1 2 2 2
kmeans2 2 2 2
kmeans3 2 2 2
kmeans4 2 2 2
kmeans5 2 2 2

lud1 2 2 2
lud2 2 2 2

b+tree 2 2 2
streamcluster 2 2 2

nw 2 2 2
BFS 2 2 2

hotspot3D 5 X X
backprop 5 X X

Parboil

spmv 3 3 3
histo 2 2 2
sad1 2 2 X
sad2 2 2 2
sad3 2 2 X

stencil 4 X X

TABLE I: On evaluating 24 applications of the top three
benchmark suites on a 4×4 CGRA, we find that IMS-based
RAMP was unable to map 5 of the loops and IMS-based
GraphMinor was unable to map 7 of the loops. The “X” in
the table denotes an II was not obtained even at a maximum
II of 50. The MII in the table denotes the minimum II, which
is the maximum of either ResMII or RecMII.

in the II. Table I shows the evaluation of the 24 performance-
critical loops from MiBench, Rodinia and Parboil on a 4×4
CGRA, while being executed on the state-of-the-art IMS based
mapping algorithms, GraphMinor [18] and RAMP [20]. We
can see that state-of-the-art RAMP was unable to find a valid
mapping for five loops and GraphMinor was unable to find a
valid mapping for seven loops on evaluation up to a maximum
II=50. One major observation was that, when these previous
algorithms find a mapping, they achieve a very good II, but
when the mapping fails, they are unable to map the loops even
with II increments up to 50. For example in loop jpeg1, while
the minII was 3, both the techniques were unable to map the
loop, even when the II was increased to 50.

Thus, the main problem in IMS is the absence of random-
ness in the scheduling algorithm. As a result, even when the II
is increased, the same schedule is generated without obtaining
a valid mapping. Hence, this creates a need for an enhanced
scheduling algorithm that explores the schedule space to
increase the mappability of the compute-intensive loops. A
more detailed explanation with a motivating example is given
in Section IV. In this paper, we propose CRIMSON (Compute-
intensive loop acceleration by Randomized Iterative Modulo
Scheduling and Optimized mapping on CGRA). Instead of just
using the Resource constrained ASAP schedule, CRIMSON
generates both the Resource Constrained As Soon As Possible
(RC ASAP) and Resource Constrained As Late As Possible
(RC ALAP) schedules for all the nodes of DFG, similar to the
concept of mobility used in high-level synthesis (HLS) [23].
CRIMSON then chooses a random time between RC ASAP

3

a

cb

fe

g

(a)

1 2

(b)

0

1

2

Modulo
time

(c)

a
b c
e f

g

PE1 PE2

T

T+1

T+2

time

g a

cb

fe

II = M
II = 3

T+3 ag
(d)

1

Fig. 2: (a) DFG of an application loop. (b) a 1x2 CGRA target
architecture. (c) An IMS schedule of nodes of DFG. The X-
axis is the modulo time. (d) A mapping of the scheduled nodes
on the time-extended CGRA (TEC).

and RC ALAP as the scheduling time for each node. As a
result, every time a “new” schedule is obtained, CRIMSON
is able to effectively explore the schedule space. CRIMSON
also incorporates a novel conservative feasibility test after
the scheduling step to check the mappability of the obtained
schedule. This conservative test makes sure that the generated
schedule will be mappable even after the addition of the
new routing nodes, thereby rendering feasibility by quickly
weeding out some unmappable schedules, and saving time.
Among the 24 performance-critical (that account for more than
7% of execution time of the application) loops from MiBench,
Rodinia, and Parboil, our approach CRIMSON was able to
map all the loops for various CGRA sizes ranging from 4×4
to 8×8. Our approach CRIMSON achieved a comparable II
for the loops which were mappable by RAMP.

II. BACKGROUND AND TERMINOLOGY

CGRA compilers in general first create the Data Flow
Graph (DFG) D = (V,E) of a compute-intensive loop,
where V refers to the nodes of the loop and E refers to the
edges (data dependencies between nodes) in the graph. The
constructed DFG is then software pipelined using IMS [22],
where each node is assigned a schedule-time at which it should
be executed.

Fig 2(a) shows the DFG of a loop, and Fig 2(b) shows the
target CGRA architecture. The schedule of the DFG nodes are
shown in Fig 2(c), considering the resource and the recurrence
cycle constraints. After scheduling, the nodes are then mapped
onto the PEs of CGRA such that the dependent operands
can be routed from the PE on which the source operation
is mapped to the PE on which the destination operation is
mapped through either registers, memory or paths in the
CGRA graph. A register can be used to route operands when
the dependent operation is mapped to the same PE as the
source operation. Memory can be used to route operands, but
that requires inserting additional load and store instructions.
A path is a sequence of edges and nodes in the CGRA graph
that connect two PEs. In the simplest case, a path is just a
single edge.

For simplicity, the mapping shown in figure 2(d) uses only
edges to route dependencies. In this mapping, node a of
iteration i (shown in dark color) is mapped to PE2 at time T ,
nodes b and c are mapped to PEs, PE1 and PE2 respectively,
at T + 1. Similarly, nodes e, f of ith iteration are mapped in
PE1 and PE2 respectively at T+2. Node g of ith iteration is
mapped at PE1 at T +3. It can also be observed that a and g
are mapped at T and T+3 in PE1 and PE2. Modulo schedule
repeats itself every II cycles, in this case II=3. The node g at
T (shown in gray) is from (i − 1)th iterations. Likewise, the
node a mapped at T +3 is from (i+1)th iteration (shown in
green). Based on the schedule, which considers the recurrences
while scheduling, mapping a in PE2 satisfies the recurrence
constraint of f 1−→ a. i.e., the value of f at ith iteration can be
routed to a at (i+ 1)th iteration. In modulo scheduling, the
interval in which successive instructions can begin execution
is called the Initiation Interval (II) [22]. II is considered as
the performance metric for DFG mapping onto CGRA, as
the total number of cycles required to execute a loop will
be proportional to the II.

III. RELATED WORKS

Coarse-Grain Reconfigurable Arrays or CGRAs have been a
luring accelerator option owing to their high performance and
high power-efficiency. The ADRES CGRA [3] demonstrated
to operate at 60 GOps/W (Giga Operations per Watt). The
high power-efficiency of CGRA is due to instructions being
in pre-decoded format with no long pipelines before and after
execution, and the fact that PEs can exchange operands di-
rectly without going through a centralized register file. CGRAs
rely on the compiler to map loops onto the PEs. Some CGRA
application mapping techniques use generic algorithms [24]–
[26] like genetic algorithms or simulated annealing [14], [27],
[28] to explore the various possible mappings and come up
with a valid one. While these genetic algorithms and simulated
annealing come with inherent randomness, these methods take
exorbitantly long times to find a valid mapping, since they have
no conception of the DFG and CGRA graph structures.

Some of the older application-specific compilation tech-
niques like DRESC [14] attempt to solve the scheduling and
mapping problems together in one shot. However, this is
inefficient, since these algorithms may spend a lot of time
exploring a mapping, when even the schedule is infeasible.
A valid schedule is a pre-requisite of a valid mapping, and
since scheduling is quite quick [22], it makes sense to first
find a valid schedule, and then explore mapping solutions
only for those schedules. As a result, most modern approaches
separate the scheduling and mapping steps. When a mapping
attempt fails due to limited connectivity or additional routing
requirements, the II is increased, and a new schedule for this
increased II is obtained followed by the another attempt on
mapping. This scheduling and mapping is repeated until a valid
mapping is obtained.

Since mapping is harder, previous works concentrate on
solving the mapping and routing issues. EPIMap [13] uses
recomputation of some nodes to solve the routing problem.
REGIMap [19] uses register file in the PEs to route the

4

21

4 3

(a) (b)

Nodes IMS at
II = 3

a 0
b 1
c 1
d 2
e 0
f 0
g 1
h 1
i 2

a
b c
d
e

f
g h
i

(c) (e)

PE1 PE2 PE3 PE4

a f

b c g h

d i

r

Time

T

Ti+1

e

Ti+2

Ti+3

a e f
b c g h

d i

r

Time

T

Ti+1

Ti+2

(d)

Nodes IMS at
II = 4

a 0
b 1
c 1
d 2
e 3
f 0
g 1
h 1
i 2

(f)

PE1 PE2 PE3 PE4

Fig. 3: (a) DFG of an application loop. (b) a 2x2 CGRA target architecture. (c) Column 1 shows the nodes in the DFG and
Column 2 shows an IMS schedule for the nodes at II=MII=3. (d) The mapping algorithm tries to the map the nodes scheduled,
but fails due to additional routing nodes “r” required to route nodes f and i. Failure to find a valid mapping, the II is increased
to 4 and IMS is called again to schedule the nodes based on the workflow given in Fig 4. (e) IMS schedule for an increased
II (II=4). (f) Even at an increased II, the mapping algorithm cannot find a valid mapping due to resource constraint at Ti+1

which is not resolved at II=4 and will not be resolved on any further increase in II.

dependent operations, where as MEMMap [21] uses the data
memory to route the dependencies. More recent techniques
like, RAMP [20] presents a heuristic to choose among a variety
of routing options to try for unmapped nodes, CASCADE [29],
on the other hand, increases data throughput by decoupling
the memory accesses and the execution. Even though all
these techniques have different mapping and routing strategies,
they use the same scheduling algorithm, namely - Iterative
Modulo Scheduling, IMS [22] proposed by Rau et. al, for
VLIW architectures, uses resource constrained As Soon As
Possible (ASAP) approach to schedule the nodes of DFG. The
problem is that, even when II is increased, IMS generates the
same schedule, and is unable to explore the newly created
scheduling space created by increased II.

Instead of taking a conventional ASAP/ALAP scheduling
approach, EMS [16] proposes an alternative approach, where
the nodes of the recurrent cycles are lifted or lowered on
the time axis by assigning stages. These stages can consist
of multiple schedule times. When an operation stage is re-
assigned based on the placement of its predecessor, all the
dependent operation stages is also reassigned. However, while
the EMS schedule is not ASAP, but it is still not randomized.
As a result the generated schedule for a higher II is very
similar (if not the same) to the generated schedule at lower
IIs. HyCube [30] proposes a mapping technique for a highly
connected CGRA that uses multi-hop multi-cast path system
to communicate data in a single-cycle. In addition, HyCube’s
interconnect crossbar switch is a part of the ISA, which makes
it power-efficient. Like DRESC [14] approach of integrated
scheduling, placement and routing (P&R), HyCube’s Sched-
uleAndRoute schedules and performs P&R in one shot. This
faces the same issues as DRESC discussed above. Evidently,
HyCube’s single-cycle communication may provide better II,
but at the cost of scalability. Since, the interconnect crossbar
selection is a part of HyCube’s instruction set, for higher
CGRA sizes HyCube’s instruction becomes longer.

The main contribution of this paper is a random iterative

modulo scheduling algorithm to effectively search the schedul-
ing space and an enhanced application mapping workflow to
efficiently find a valid mapping of loops.

IV. MOTIVATING EXAMPLE

Let us consider the DFG of loop to be mapped on a 2×2
CGRA, shown in Fig 3(a) and (b), respectively. Previous state-
of-the-art techniques like RAMP, get a schedule from IMS [22]
before mapping the nodes. IMS starts by computing the
resource constrained minimum II (ResMII) and recurrence
constrained minimum II (RecMII) from the DFG and the
architecture description. For the given example in Fig 3, total
nodes = 9 and total resources available = 4. The minimum II
(MII) is the maximum of RecMII and ResMII . Therefore
for the above example, MII = ResMII = d9/4e = 3. After
computing the MII, IMS sets the priorities for each node.
Priority is a number assigned to each node, which is utilized
during scheduling. Based on the height of the node, from the
given DFG, the deepest node is given the least priority using
depth-first search strategy. For the loop DFG given in Fig 3(a),
node e gets priority 0, nodes d and i get priority 1, nodes b,
c, g, h get priority 2 and finally a and f get priority 3. The
nodes with higher priority number are scheduled first with
earliest start time. The modulo scheduling starts with II=MII
for scheduling the nodes. The CGRA is time-extended, II times
and a modulo resource table (MRT) is maintained to check for
resource overuse for each timeslot. While trying to schedule
each node, resource conflicts are checked. If there is a resource
conflict a higher schedule time is tried. For the example DFG,
the II=MII=3. Nodes a and f are scheduled at modulo time 0
(0%3). Nodes b, c, g, and h are scheduled at modulo time
1 (1%3) without any resource constraint because there are
4 resources(PEs) at each modulo time. Nodes d and i are
scheduled at modulo time 2 (2%3). Finally, e is scheduled at
modulo time 0 (3%3). The IMS schedule of nodes (shown in
column 1 Fig 3(c)) at II = 3 is shown in Fig 3(c) column 2.

5

II++

IMS for given II
Add routing

nodes and mapValid Mapping
SuccessSuccess

Annotated C File DFG
Find minII with

resource and re-
currences

Fail

Fig. 4: Overview of scheduling and mapping workflow of
previous techniques.

With this prescribed schedule, mapping algorithms start to
map the nodes, but eventually find that a routing node needs to
be added to route operation f and i. Due to the unavailability
of PEs in that timeslot a routing node cannot be added, as
shown in Fig 3(d). At this juncture, the mapping algorithm
increases the II in an effort to find a schedule that is mappable.
On increasing the II from 3 to 4, the IMS algorithm is invoked
again to get a schedule. Since the priority calculation of IMS
is DFG-based, all the nodes get the same priority. Now, IMS
algorithm starts to schedule nodes based on the priorities for
each node. Nodes a and f are scheduled at modulo time 0
(0%4). Nodes b, c, g, and h are scheduled at modulo time 1
(1%4). Nodes d and i are scheduled at modulo time 2 (2%4)
and e is scheduled at modulo time 3 (3%4). The IMS schedule
for II=4 is shown in Fig 3(e) column 2. Again, on failure
to map, the mapping algorithm increases the II to 5. IMS
repeats the process of assigning priorities to the nodes and as
seen in II=4, the priorities do not change. Nodes a and f are
scheduled at modulo time 0 (0%5). Nodes b, c, g, and h are
schedule at modulo time 1 (1%5). Nodes d and i are scheduled
at modulo time 2 (2%5) and finally e is scheduled at modulo
time 3 (3%5). On comparing the schedules obtained for II=3,
II=4, and II=5, it can be seen that only node e has a different
schedule time (from II=3 to II=4) and rest of the nodes have
the same schedule. Hence, with IMS, it can be seen that an
increase in the II does not correspond to a change in modulo
schedule time of the nodes.

The algorithm keeps trying to find a valid mapping at higher
II even when there is a mapping failure at a given modulo
schedule. This process keeps on repeating endlessly. In the
workflow of the previous techniques, as shown in Fig 4, after
finding the MinII and obtaining an IMS schedule, the mapping
of the nodes begin assuming that the schedule is mappable.
There are no mechanism to statically and systematically find
the feasibility of the obtained schedule, which results in an
infinite loop between the scheduling and the mapping stages.

V. CRIMSON: EFFICIENTLY ACCELERATE LOOPS BY
RANDOMIZED ITERATIVE MODULO SCHEDULING AND

OPTIMIZED MAPPING

A. Overview

To alleviate the challenges posed by IMS and the previous
mapping algorithms, CRIMSON randomizes the schedule time
of each node of the DFG by choosing a time between

Annotated C File

Create Ran-
domized IMS

RC ASAP and ALAP
Schedule for given II

Feasibiltity Test
Add routing

nodes and mapValid Mapping

DFG II = MII

II++

Fail > λ

Success

Success

SuccessSuccess

Fail

Fail
Fail

Find minII with
resource and re-

currences

Fig. 5: An overview of CRIMSON workflow, with addi-
tion of RC ASAP and RC ALAP computation, Randomized
Scheduling algorithm, and a Feasibility Test (shaded blocks in
the image are proposed by this paper).

RC ASAP and RC ALAP. Additionally, CRIMSON proposes
a change to the previous mapping algorithm workflow Fig 4
by performing a feasibility test before the actual mapping.

Fig 5 shows the modification to the traditional IMS-based
workflow shown in Fig 4. CRIMSON modifies the IMS-
based mapping workflow by adding RC ASAP and RC ALAP
computation steps before finding a random schedule. The
“Create Randomized Schedule” block uses Algorithm 1 and
Algorithm 2 to find a random modulo schedule time. On a
failure to find a schedule, “Create Randomized IMS” block
is invoked λ times before increasing the II. When a random
modulo schedule is obtained, the feasibility test statically
analyzes if the obtained random schedule honors the resource
constraints when routing nodes are added. If a schedule is
found to be infeasible due to possible resource overuse, a
different modulo schedule is tried for the same II. If the
random schedule obtained is valid and feasible, then the
mapping algorithm is called to add routing nodes and map
the scheduled DFG onto the CGRA architecture.

B. Computing Resource-Constrained ASAP and Resource-
Constrained ALAP

Algorithm 1 shows the CRIMSON’s randomized iterative
modulo scheduling algorithm. Lines 1-2 finds the RC ASAP
from the Strongly Connected Components (SCCs)1 of the
DFG. The RC ASAP is computed in Line 3 of Algorithm 1
as a top-down, depth-first search approach, from the nodes
that do not have any incoming edges in the current iteration.
After computation of RC ASAP, RC ALAP is computed,
starting from the nodes that do not have any outgoing edges in
the current iteration and in a bottom-up (reverse), depth-first
search manner, in Line 4 of Algorithm 1.

C. Randomized Scheduling Algorithm

After computing RC ASAP and RC ALAP, Algorithm 1
Line 5 populates the unscheduled array whereas line 6 sets a
boolean Scheduled operation to false for all the nodes, which
is used in Algorithm 2. For all the unscheduled sorted nodes
in the array, a random modulo timeslot is picked by honoring

1Getting the list of SCCs ensures that the nodes in recurrence-cycles are
scheduled first using Sort SCC() function in Line 5.

6

Algorithm 1: Rand Iterative Mod Schedule (In-
put DFG D, CGRA CA, Input II)

1 D’ ← D;
2 SCCs ← Find List of Sccs(D′);
3 Find RC ASAP (II, Sccs, CA);
4 Find RC ALAP (II, Sccs, CA);
5 unscheduled ← Sort Sccs(Sccs);
6 Set Scheduled op false(unscheduled);
7 iter ← 0;
8 while unscheduled size > 0 & iter < threshold do
9 operation ← unscheduled[0];

10 TimeSlot ←
Find Random ModuloT ime(operation,CA);

11 if (schedule(nodes, T imeSlot)) then
12 scheduled ← nodes;
13 else
14 return failure;
15 unscheduled ←

Subtract(unscheduled, scheduled);
16 iter++;
17 if (iter == threshold & unscheduled size > 0) then
18 return failure;
19 return success;

the resource constraints maintained by MRT, in Line 10 of the
Algorithm 1.

The schedule() function in Line 11 of the Algorithm 1,
schedules the node at chosen random timeslot . This schedule
function sets the schedule time of the current operation and
consecutively displaces the nodes that have resource conflicts.
Previously scheduled nodes having a dependence conflicts
with the current operation are also displaced after updating
the RC ASAP and RC ALAP based on the current schedule
operation. The displaced nodes are added to queue of unsched-
uled nodes. Similar to the BudgetRatio in IMS [22], the iter
is a high value. On a failure to find a schedule, either due to
unscheduled nodes lines 13-14 or if the iter value is greater
than a threshold (lines 17-18), the Algorithm 1 is invoked
again. This is repeated λ times before increasing the II, in an
attempt to find a valid schedule. This λ value is not reset for a
particular II and used to control the failure due to unmappable
schedule or a failure in the mapping step.

Algorithm 2 is called by CRIMSON’s randomized iterative
modulo schedule (Rand Iterative Mod Schedule) Algo-
rithm 1 line 10, to find a random timeslot between RC ASAP
and RC ALAP. The RC ASAP and RC ALAP for a given
operation is retrieved in lines 1-2 of Algorithm 2. Then, an
array of timeslots is constructed using the op ASAP and
op ALAP , line 4 of Algorithm 2. The array holds all the
timeslots from op ASAP with an increasing value of 1 until
op ALAP . If op ASAP is equal to op ALAP then the
array size is one with either ASAP or the ALAP time. Each
timeslot from the randomized array is checked for the resource
constraint using MRT. The first valid timeslot is returned as the
modulo schedule time for the operation. Due to the resource
conflict if a valid timeslot is not present, there are two things

Algorithm 2: Find Random ModuloT ime (Opera-
tion op, CGRA CA)

1 op ASAP ← get RC ASAP (op);
2 op ALAP ← get RC ALAP (op);
3 sched slot ← ∅;
4 timeslots ← get all timslots(op ASAP, op ALAP);
5 Randomize(timeslots);
6 while (sched slot == ∅ & timslots size > 0) do
7 currT ime← timeslots[0];
8 if (ResourceConflict(op, currT ime,CA)) then
9 timeslots ← Subtract(currT ime, timeslots);

10 continue;
11 else
12 sched time← currT ime ;
13 if (sched slot == ∅) then
14 if (!Scheduled[op] ||

op ASAP > Prev Sched T ime[op]) then
15 sched slot← op ASAP ;
16 else
17 sched slot← Prev Sched T ime[op] + 1;
18 return sched slot;

to handle, (a) a timeslot for the operation should be chosen
and (b) an already scheduled operation from that timeslot
should be displaced. Concern (a) in handled in lines 13-17
of Algorithm 2 where if the nodes has not been scheduled
previously, op ASAP is chosen as the schedule, else the
previous schedule time of the operation is found and the
modulo schedule time is computed using line 17. Concern (b)
is addressed in the schedule() function in Algorithm 1 line
11, explained earlier. The methods addressing these concerns
are similar to IMS implementation.

D. Novel Feasibility Test

Given a valid schedule, it may not be possible to map it
because of two main reasons: i) limited connectivity among the
PE nodes, and ii) the need to map the extra routing nodes that
will be created as a result of scheduling. In a valid schedule
dependent operations may be scheduled in non-contiguous
timeslots. When this is the case, the operands need to be
routed from the PE on which the source operand is mapped,
to the PE on which the destination operation is mapped.
The operands can be routed using a string of consecutive
CGRA interconnections and PEs. These PEs are referred to
as routing PEs, and the operation that is mapped on these
PEs (just forward the operand from input to output) is called
a routing operation. Because of the addition of these routing
nodes, the generated schedule may not be mappable. Previous
techniques assume that the schedule is mappable and spend a
lot of time searching for a mapping when none is available.
In order to avoid wasting time in exploring unmappable
schedules, CRIMSON adds a conservative feasibility test to
prune schedules that can be proven to be unmappable.

The feasibility test examines the random schedule pro-
duced, and for each routing resource that will be added in

7

the future, it estimates the resource usage, considering path-
sharing [18]. The feasibility test checks if the total number
of unique nodes including the routing nodes per timeslot is
less than or equal to the number of PEs in that timeslot.
schedule nodesi + routing nodesi <= PEsi, where i is
the modulo timeslot. This feasibility check is performed for
all the II timeslots. The mapping algorithm is invoked only
for schedules that are feasible, unlike the previous approaches
such as RAMP [20], where the mapping algorithm is invoked
even for infeasible schedules. Since the time complexity of
such mapping algorithms is high (time complexity of RAMP
is O(N8), where N = n ∗m, and ‘n’ is the total nodes in the
loop DFG, and ‘m’ is the size of the CGRA), invoking them
for infeasible schedules is counter productive. The feasibility
test reduces the overhead incurred by the mapping algorithm
by pruning the infeasible schedules.

E. Determining the λ value

With every failure in the feasibility test a new schedule
is obtained for a given II. The number of times a schedule
is obtained for a given II is controlled by the λ value.
The scheduling space that can be explored for a given II is
calculated by the product of the total nodes in the DFG, the
size of the CGRA, and the II, given in Equation 1. A brute
force exploration of the schedule space is time consuming.
Lower λ values may increase the II prematurely, by superfi-
cial exploration of schedule space, whereas higher λ values
increase the compilation time, due to elaborate exploration of
the schedule space. Due to the randomness in the scheduling
algorithm, a feasible schedule may be obtained faster by
chance even for a higher λ value. The λ value is computed
using,

λ = exploration factor × n×m× II (1)

where, ‘n’ is the total number of nodes in the loop DFG,
‘m’ is the size of the CGRA and, exploration factor is the
percentage of the schedule space that is to be explored. The
exploration factor is a user defined parameter. II is also one
of the parameters that determines the λ value in Equation 1,
which means that a new λ is computed for each II. When the
II is increased, the scheduling space is also increased therefore
the scope of exploration gets broadened. A detailed discussion
on the effects of exploration factor on the scheduling time and
II is given in Section VI-E.

F. Running Example

Fig 6 shows the working of CRIMSON’s randomized it-
erative modulo schedule algorithm for the DFG and CGRA
architecture shown in Fig 6(a)-(b)2. Instead of assigning a pri-
ority based on height like IMS, each node in DFG is assigned
two times namely, Resource Constrained As Soon As Possible
(RC ASAP) and Resource Constrained As Late As Possible
(RC ALAP), which constitutes a good lower and upper bound
for scheduling [16]. Similar to IMS, CRIMSON maintains an

2The DFG and the architecture is the same as the motivation example
Fig.3(a)-(b)

21

4 3

(a)

(b)

a

b c

d

e

f

g h

i

Nodes Res
Cons.
ASAP

Res
Cons.
ALAP

CRIMSON
Schedule

a 0 2 0
b 1 3 1
c 1 3 1
d 2 4 2
e 3 5 0
f 0 2 0
g 1 3 1
h 1 3 2
i 2 4 2

a e f

b c g

hd i

r

Time

T

Ti+1

PE1 PE2 PE3 PE4

Ti+2

(c) (d)

Fig. 6: (a) The DFG of the motivation example. (b) A 2x2
CGRA architecture. (c) For each node of the DFG, resource
constrained ASAP (column 2) and resource constrained ALAP
(column 3) is first calculated. Then a random schedule time
between RC ASAP and RC ALAP is chosen for each node.
A valid randomized modulo schedule is shown in column 4.
(d) With CRIMSON schedule a valid mapping is achieved by
the mapping algorithm at II=3.

MRT to check for resource overuse during RC ASAP and
RC ALAP assignment. The RC ASAP is calculated from the
nodes that does not have any incoming edges in the current
iteration. These nodes are allotted RC ASAP time as 0, which
means, that the earliest start time of these nodes is at time
0. Based on the outgoing nodes from these start nodes and
the delay of each operation, the RC ASAP of consecutive
nodes are computed in a depth-first manner (similar to IMS
priority calculation). For the DFG in analysis, nodes a and f
are assigned the RC ASAP time as 0. Nodes b, c, g, and h
are assigned RC ASAP time as 1. Nodes d and i are assigned
RC ASAP time 2 and node e is assigned RC ASAP time 3.
The RC ASAP times of each node is shown in Fig6(c) column
2. Next, starting from the last nodes of the DFG, i.e., nodes
without any outgoing nodes in the current iteration, the nodes
are assigned RC ALAP in a reverse depth-first search manner,
using RC ALAP = RC ASAP + II − 1. This ensures
that RC ALAP >= RC ASAP . For the given DFG, e is
assigned RC ALAP time 5, node h is assigned 3. Nodes d and
i are assigned RC ALAP time 4. Nodes b, c and g are assigned
RC ALAP time 3. Finally a and f are assigned RC ALAP
time 2. The RC ALAP times of each node is shown in Fig6(c)
column 3.

After computing the RC ASAP and RC ALAP, CRIMSON
chooses a random time between RC ASAP and RC ALAP, to
schedule the nodes. Like IMS, CRIMSON maintains a Modulo
Resource Table (MRT) to check for resource overuse in each
II modulo timeslot. After checking for resource constraints
the modulo schedule time is chosen for each node. This
randomization of modulo schedule time creates flexibility of
movement for the nodes, which explores different modulo
schedule spaces, thereby increasing the chances of finding
a valid mapping by the mapping algorithm. A randomized
modulo schedule for the example DFG is shown in Fig6(c)
column 4, and a valid mapping for the scheduled nodes is
shown in Fig 6(d) at II=3. The loop that was previously
unmappable due to the restrictive scheduling of IMS Fig 3,
is now mappable at II=3 due to randomization in assigning

8

Suites Loops #nodes #mem. nodes #edges

MiBench

bitcount 22 4 28
susan 31 8 35
sha 31 10 39

jpeg1 43 10 48
jpeg2 28 6 33

Rodinia

kmeans1 15 6 17
kmeans2 16 6 17
kmeans3 17 4 20
kmeans4 16 4 19
kmeans5 12 2 13

lud1 21 4 24
lud2 20 4 24

b+tree 13 2 13
streamcluster 16 4 19

nw 20 6 21
BFS 28 10 32

hotspot3D 76 20 96
backprop 39 16 44

Parboil

spmv 25 8 27
histo 18 4 20
sad1 25 4 30
sad2 19 4 20
sad3 12 4 12

stencil 69 16 94

TABLE II: Benchmark characteristics.

modulo schedule time.
If we take a closer look at the RC ASAP and RC ALAP

times shown in Fig6(c) column 2 and 3, we can observe that
there is a chance that the RC ASAP may be the modulo
schedule chosen for all the nodes, since assigning a modulo
schedule time for the nodes from RC ASAP and RC ALAP
is randomized. As seen in Fig 3(d)&(e), this schedule is not
mappable. Unless there is a change to the workflow, there
is a chance that finding a schedule that is unmappable and
increasing the II to get a schedule process is repeated. To
take care of this issue, CRIMSON proposes changes to the
previous IMS-based workflow by statistically computing the
feasibility of the scheduled nodes, prior to the mapping of the
nodes. This makes sure that if a schedule is not mappable,
a different random schedule is tried again for the same II.
The number of times the mapping is tried for a given II is
controlled by a threshold factor λ. With induced randomization
in mapping and changes to the workflow, CRIMSON is able to
achieve mapping of the application loops that were previously
unmappable by IMS-based mapping techniques.

VI. EXPERIMENTAL RESULTS

A. Setup

Benchmarks: We profiled top three of the widely used
benchmark suites namely, MiBench [31], Rodinia [32], and
Parboil [33]. The top performance-critical, non-vectorizable
loops3 were chosen for the experiments. Loops that could
not be compiled or the loops that were memory bound were
not considered. Experiments were designed to consider only
innermost loops so that a direct comparison with IMS can be
made. These benchmarks depict a wide variety of applications
from security, telecomm etc. to parallel, high-perfomance

3Maximum up to 5 loops per benchmark, with each contributing >7% of
the execution time of the application when executed with standard inputs that
are shipped with the benchmark suites.

computing (HPC) loops like spmv (sparse matrix-vector prod-
uct). These loops on average across all the benchmark loops,
corresponds to ≥50% of the total application execution time.

Compilation: For selecting the loops from the application
and converting the loops to the corresponding DFG, we
used CCF [34] - CGRA Compilation Framework (LLVM 4.0
[35] based). On top of the existing framework, to effectively
compile the loops with control-dependencies (If-Then-Else
structures), we implemented partial predication [36] as an
LLVM pass, to convert the control-dependencies into data
dependencies. Partial Predication [36] can efficiently handle
loops with nested if-else structures. The loop characteristics
are shown in Table II including the number of nodes in
the DFG (only computing nodes are included and constants
that can be passed in the immediate field of the ISA are
excluded) and number of memory (load/store) nodes. CCF
framework [34] produces DFG of the loop with separate
address generation and actual load/store functionality. Further-
more, during the addition of routing resources after schedul-
ing, we have implemented path-sharing technique proposed
in GraphMinor [18]. Path-sharing can reduce the redundant
routing nodes added. We implemented CRIMSON as a pass
in the CCF framework including the λ value computation
and the feasibility test. We also implemented the IMS-based
state-of-the-art RAMP [20] and GraphMinor [18] as a pass
in CCF. As observed in Table I, RAMP has demonstrated
equal or better results when compared to GraphMinor. Hence,
we compare CRIMSON against RAMP. We compiled the
applications of the benchmark suites using optimization level
3 to avoid including loops that can be vectorized by compiler
optimizations. We considered 2D torus mesh CGRA of sizes
4×4, 5×5, 6×6, 7×7, and 8×8.

B. CRIMSON is able to schedule and map loops that could
not be mapped using RAMP

From Table III, we can infer that for loops, jpeg1, jpeg2,
hotspot3D, backprop, and stencil, IMS-based state-of-the-
art heuristic RAMP, was not able to find a valid mapping
for a 4×4 CGRA (denoted by “X” in Table III). From the
motivating example Fig 3, IMS produces almost the same
modulo schedule time for most of the nodes for any increase
in II. CRIMSON, on the other hand, facilitates the exploration
of different modulo scheduling times for nodes of the DFG,
resulting in a valid mapping. It is observed that even at a lower
CGRA size 4×4, CRIMSON was able to map these particular
loops. From Table III, when running on RAMP, loops that
were not mappable on a 4×4 CGRA, were eventually mapped
when allocated enough resources. For example, stencil which
was unmappable by RAMP on a 4×4 CGRA was mapped
on a 5×5 CGRA due to allocation of additional resources.
Therefore it can be said that the motivating example can
also be mapped when allocated enough resources. From the
motivating example, if Fig 3(b) CGRA architecture was a
3×3 CGRA, then the IMS-based mapping algorithm would
have used the extra resources provided to route the operation
r. But this conclusion was not applicable to all the loops,
meaning, loops such as hotspot3D and jpeg2 were unable

9

Suites Loops 4x4 5x5 6x6 7x7 8x8
MII RAMP CRIM. MII RAMP CRIM. MII RAMP CRIM. MII RAMP CRIM. MII RAMP CRIM.

MiBench

bitcount 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
susan 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2
sha 3 3 4 2 X 3 2 3 2 2 2 3 2 2 4
jpeg1 3 X 6 2 X 4 2 2 2 2 2 2 2 2 2
jpeg2 2 X 5 2 X 3 2 X 2 2 2 2 2 2 2

Rodinia

kmeans1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
kmeans2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
kmeans3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
kmeans4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
kmeans5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
lud1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
lud2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
b+tree 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
streamcluster 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
nw 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
BFS 2 2 3 2 3 3 2 2 3 2 2 2 2 2 3
hotspot3D 5 X 10 4 X 7 4 X 7 3 X 6 3 X 4
backprop 5 X 7 4 4 4 3 3 3 3 3 3 3 3 4

Parboil

spmv 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
histo 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
sad1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
sad2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
sad3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
stencil 4 X 6 3 4 5 3 3 3 3 3 4 2 2 2

TABLE III: A comprehensive table showing the MII and II achieved by RAMP, an evaluated IMS-based heuristic, and
CRIMSON (CRIM.) for 24 benchmark application loops from three major benchmark suites at 0.005 exploration factor.
The “X” in the table denotes that there was no mapping obtained from RAMP for an increasing II up to 50. MII in the table
denotes the minimum II, which is the maximum of either ResMII or RecMII.

to find a valid mapping even when additional resources were
allocated. RAMP was not able to achieve a mapping even at
8×8 CGRA for hotspot3D whereas RAMP was not able to
achieve a mapping till 6×6 for jpeg2. While RAMP is able
to map most of the loops at a higher CGRA size, CRIMSON
with effective randomized modulo scheduling was able to map
all the loops at size 4×4. Additionally, for sad1 and sad3
loops, for which GraphMinor was not able to find a mapping,
CRIMSON was able to achieve a mapping at 4×4 CGRA size.

C. CRIMSON has nearly identical II for loops that could be
mapped using RAMP

From Table III we can observe that for loops mapped
using RAMP, the II obtained from CRIMSON was comparable
to RAMP across five different CGRA sizes ranging from
4×4 to 8×8. We can see an occasional spike in the II in
CRIMSON for susan at 4×4 and stencil on 5×5, which
is due to premature II increase by CRIMSON based on
the λ value. To emphasize, λ is the maximum number of
randomized schedules that are explored at the same II. A
new schedule may be requested (i) on a failure to find a
randomized schedule, (ii) on a failure of the feasibility test
or, (iii) a failure to map. The λ value is not reset for a given
II. After exhausting the λ limit, the II is increased and a new
RC ASAP and RC ALAP is computed along with a new λ
value. The λ value is computed by Equation 1 for each II. The
λ value is determined by the user defined exploration factor,
which is the percentage of schedule space to that should be
explored. If the exploration factor is set too low, less modulo
schedules are explored per II, thereby making it difficult to
obtain a valid mapping and increasing the II prematurely. If
the exploration factor is set too high the time to obtained

a valid schedule/mapping increases, which negatively affects
the compilation time of CRIMSON. Table III comprehensively
conveys that CRIMSON has a nearly identical performance
compared to RAMP for all the loops across different CGRA
architectures that RAMP was able to map and CRIMSON is
better than RAMP by mapping the five loops that were not
mappable by RAMP and seven loops that were not mappable
by GraphMinor on a 4×4 CGRA. The II obtained from
CRIMSON is not always equal to or better than state-of-the-art
RAMP and is dependent on the λ value.

D. Scheduling time comparison between CRIMSON and IMS.

The scheduling time for IMS [22] and CRIMSON are shown
in Fig. 7, which is reported based on the execution of both the
algorithms on Intel-i7 running at 2.8GHz with 16GB memory.
As shown in Fig 7, the x-axis is the scheduling time i.e, time to
obtain a valid schedule that is mappable, in µs (microseconds)
and the y-axis corresponds to the benchmark loops. The 19
benchmarks shown in Fig 7 are those in which a mappable
schedule was obtained by IMS. From Fig 7, we can see that the
scheduling time of CRIMSON is slightly higher than that of
IMS. This is due to the additional computation of RC ASAP
and RC ALAP, and the feasibility test (Fig 5). For the loops
shown, the exploration factor was kept at 0.005.

E. Trade-off analysis between scheduling time and II at dif-
ferent λ values.

From Equation 1, we can see that the λ value depends on the
exploration factor. This factor is defined as the percentage of
modulo schedule space to be explored when there is an infeasi-
ble schedule or a mapping failure. The exploration factor was

10

1
10

100
1000

10000
100000

bi
tc

ou
nt

su
sa

n

sh
a

km
ea

ns
1

km
ea

ns
2

km
ea

ns
3

km
ea

ns
4

km
ea

ns
5

lu
d1

lu
d2

b+
tr

ee

st
re

am
cl

us
te

r

nw BF
S

sp
m

v

hi
st

o

sa
d1

sa
d2

sa
d3

G
eo

m
ea

n

MiBench Rodinia Parboil

Sc
he

du
lin

g
tim

e
(μ

s)

Benchmark Loops

IMS CRIMSON

Fig. 7: Scheduling time comparison of CRIMSON and IMS.

2

4

6

8

0

100

200

300

400

0.005 0.01 0.05 0.1

II

CR
IM

SO
N

Sc
he

du
lin

g
Ti

m
e

(s
)

Exploration Factor Values

Scheduling Time II

Fig. 8: Scheduling time vs. II trade-off trend for stencil.

changed from 0.5% (0.005) to 10% (0.1) and the correspond-
ing scheduling time and II were recorded. The scheduling time
numbers are recorded from executing CRIMSON on Intel-i7
running at 2.8GHz and 16GB memory and the compilation
was performed for a 4×4 CGRA. A 4×4 CGRA was chosen
because the II obtained by CRIMSON was much greater than
the MII and the effect of λ can be shown clearly. In Fig 8 and
Fig 9, the left y-axis (primary axis) denotes the CRIMSON
scheduling time, in seconds, and the right y-axis (secondary
axis) denotes the II obtained. The x-axis denotes the different
exploration factors. From Equation 1 it is to be noted that
as the exploration factor increases, the λ value increases.
From Fig 8 and Fig 9, it is evident that as exploration factor
increases the CRIMSON scheduling time increases, due to
elaborate exploration of the schedule space at a given II. For
lower value of the exploration factor, superficial exploration
of modulo schedule space prematurely increases the II but at
lower scheduling time. We can also note from Fig 9 at 0.1 that
the above statement is not always true. At 0.1 the II decreases
with the decrease in the scheduling time because a feasible
and a mappable schedule was obtained earlier in the modulo
schedule space exploration due to the innate randomness of
the CRIMSON scheduling algorithm.

VII. CONCLUSION

This paper presented some of the major challenges encoun-
tered in the state-of-the-art mapping techniques with respect to

4

6

8

10

12

50
100
150
200
250
300

0.005 0.01 0.05 0.1

II

CR
IM

SO
N

Sc
he

du
lin

g
Ti

m
e

(s
)

Exploration Factor Values

Scheduling Time II

Fig. 9: Scheduling time vs. II trade-off trend for hotspot3D.

scheduling and mapping of compute-intensive loops onto the
CGRA. The previous mapping techniques use IMS scheduling
that rarely showed a change in the modulo schedules for in-
creased II, which obstructed the mapping algorithm to map the
application loops onto the CGRA architecture. Additionally,
previous mapping techniques assumed that the obtained IMS
schedule is mappable and started to map the scheduled nodes.
On a failure to map, due to the limited connectivity of the PEs
or addition of routing nodes, the mapping algorithms increase
the II and call IMS again to get a schedule that almost never
changes. To mitigate these challenges, this paper introduced
CRIMSON, that comprehensively modeled RC-ASAP and
RC-ALAP, picking a random modulo schedule time between
these upper and lower boundaries. CRIMSON generated dif-
ferent schedules, thereby exploring different schedule spaces,
on each invocation for a given or increased II. CRIMSON
also introduced a novel feasibility test that pruned schedules
that are unmappable. On evaluating the top 24 performance-
critical loops from MiBench, Rodinia and Parboil, CRIMSON
was able to map 5 application loops that were unmappable
by RAMP and 7 application loops that were unmappable by
GraphMinor. The II achieved by CRIMSON was comparable
to the II achieved by RAMP for the application loops that
were mappable by RAMP.

11

ACKNOWLEDGMENT

This work was partially supported by funding by National
Science Foundation grants CNS 1525855, and CCF 1723476
- the NSF/Intel joint research center for Computer Assisted
Programming for Heterogeneous Architectures (CAPA).

REFERENCES

[1] Lirong Zheng, Hui Zhang, Weili Han, Xiaolin Zhou, Jing He, Zhi Zhang,
Yun Gu, Junyu Wang, et al. Technologies, applications, and governance
in the internet of things. Internet of things-Global technological and
societal trends. From smart environments and spaces to green ICT, 2011.

[2] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur
Çetintemel, and Stanley B Zdonik. Tupleware: “Big” Data, Big An-
alytics, Small Clusters. In CIDR, 2015.

[3] Frank Bouwens, Mladen Berekovic, Bjorn De Sutter, and Georgi Gay-
dadjiev. Architecture enhancements for the ADRES coarse-grained
reconfigurable array. In International Conference on High-Performance
Embedded Architectures and Compilers, pages 66–81. Springer, 2008.

[4] Chris Nicol. A Coarse Grain Reconfigurable Array (CGRA) for
Statically Scheduled Data Flow Computing. Wave Computing White
Paper, 2017.

[5] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks. IEEE Journal of Solid-State Circuits, 52(1):127–138,
2017.

[6] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A Spatial
Architecture for Energy-Efficient Dataflow for Convolutional Neural
Networks. ACM SIGARCH Computer Architecture News, 44(3):367–
379, 2016.

[7] Xitian Fan, Huimin Li, Wei Cao, and Lingli Wang. DT-CGRA: Dual-
track Coarse-Grained Reconfigurable Architecture for Stream Applica-
tions. In 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–9. IEEE, 2016.

[8] Devereaux Conrad Chen. Programmable arithmetic devices for high
speed digital signal processing. PhD thesis, Citeseer, 1992.

[9] Reiner W Hartenstein and Rainer Kress. A Datapath Synthesis System
for the Reconfigurable Datapath Architecture. In Proceedings of ASP-
DAC’95/CHDL’95/VLSI’95 with EDA Technofair, pages 479–484. IEEE,
1995.

[10] Ethan Mirsky, Andre DeHon, et al. MATRIX: a reconfigurable comput-
ing architecture with configurable instruction distribution and deployable
resources. In FCCM, volume 96, pages 17–19, 1996.

[11] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J Kurdahi, Nader
Bagherzadeh, and Eliseu M Chaves Filho. MorphoSys: An Integrated
Reconfigurable System for Data-Parallel and Computation-Intensive
Applications. IEEE transactions on computers, 49(5):465–481, 2000.

[12] Takashi Miyamori and Kunle Olukotun. REMARC: Reconfigurable
multimedia array coprocessor. IEICE Transactions on information and
systems, 82(2):389–397, 1999.

[13] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. EPIMap:
Using epimorphism to map applications on CGRAs. In Proceedings
of the 49th Annual Design Automation Conference, pages 1284–1291.
ACM, 2012.

[14] B Mei, M Berekovic, and JY Mignolet. ADRES & DRESC: Architecture
and compiler for coarse-grain reconfigurable processors. In Fine-and
coarse-grain reconfigurable computing, pages 255–297. Springer, 2007.

[15] Hyunchul Park, Kevin Fan, Manjunath Kudlur, and Scott Mahlke.
Modulo Graph Embedding: Mapping Applications onto Coarse-Grained
Reconfigurable Architectures. In Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded
systems, pages 136–146. ACM, 2006.

[16] Hyunchul Park, Kevin Fan, Scott A Mahlke, Taewook Oh, Heeseok Kim,
and Hong-seok Kim. Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, pages
166–176. ACM, 2008.

[17] Taewook Oh, Bernhard Egger, Hyunchul Park, and Scott Mahlke. Recur-
rence cycle aware modulo scheduling for coarse-grained reconfigurable
architectures. In ACM Sigplan Notices, volume 44, pages 21–30. ACM,
2009.

[18] Liang Chen and Tulika Mitra. Graph minor Approach for Application
Mapping on CGRAs. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 7(3):21, 2014.

[19] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. REGIMap:
Register-aware Application Mapping on Coarse-Grained reconfigurable
architectures (CGRAs). In Proceedings of the 50th Annual Design
Automation Conference, page 18. ACM, 2013.

[20] Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. RAMP:
Resource-Aware Mapping for CGRAs. In Proceedings of the 55th
Annual Design Automation Conference (DAC), 2018.

[21] Shouyi Yin, Xianqing Yao, Dajiang Liu, Leibo Liu, and Shaojun
Wei. Memory-aware Loop Mapping on Coarse-Grained Reconfigurable
Architectures. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 24(5):1895–1908, 2016.

[22] B Ramakrishna Rau. Iterative Modulo Scheduling. International Journal
of Parallel Programming, 24(1), 1996.

[23] Benmao Cheng, Hong Wang, Shiyuan Yang, Daoheng Niu, and Yang
Jin. A Novel Testability-oriented Data Path Scheduling Scheme in High-
Level Synthesis. Tsinghua Science & Technology, 12:134–138, 2007.

[24] Li Zhou, Dongpei Liu, Min Tang, and Hengzhu Liu. Mapping Loops
onto Coarse-Grained Reconfigurable Array Using Genetic Algorithm.
In Proceedings of The Eighth International Conference on Bio-Inspired
Computing: Theories and Applications (BIC-TA), 2013, pages 801–808.
Springer, 2013.

[25] Dajiang Liu, Shouyi Yin, Leibo Liu, and Shaojun Wei. Polyhedral
model based mapping optimization of loop nests for CGRAs. In Design
Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE, pages 1–8.
IEEE, 2013.

[26] Ganghee Lee, Kiyoung Choi, and Nikil D Dutt. Mapping multi-
domain applications onto coarse-grained reconfigurable architectures.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 30(5):637–650, 2011.

[27] Akira Hatanaka and Nader Bagherzadeh. A modulo scheduling algo-
rithm for a coarse-grain reconfigurable array template. In Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE Interna-
tional, pages 1–8. IEEE, 2007.

[28] Giovanni Ansaloni, Kazuyuki Tanimura, Laura Pozzi, and Nikil Dutt.
Integrated kernel partitioning and scheduling for coarse-grained recon-
figurable arrays. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 31(12):1803–1816, 2012.

[29] Dhananjaya Wijerathne, Zhaoying Li, Manupa Karunarathne, Anuj
Pathania, and Tulika Mitra. CASCADE: High Throughput Data Stream-
ing via Decoupled Access-Execute CGRA. ACM Transactions on
Embedded Computing Systems (TECS), 18(5s):1–26, 2019.

[30] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-
Shiuan Peh. HyCUBE: A CGRA with reconfigurable single-cycle multi-
hop interconnect. In Proceedings of the 54th Annual Design Automation
Conference 2017, pages 1–6, 2017.

[31] Matthew Guthaus et al. MiBench: A free, commercially representative
embedded benchmark suite. In WWC, 2001.

[32] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite
for heterogeneous computing. In 2009 IEEE international symposium
on workload characterization (IISWC), pages 44–54. Ieee, 2009.

[33] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid,
Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W
Hwu. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance
Computing, 127, 2012.

[34] Shail Dave and Aviral Shrivastava. CCF: A CGRA Compilation
Framework. 2018.

[35] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO, 2004.

[36] Kyuseung Han, Junwhan Ahn, and Kiyoung Choi. Power-efficient
predication techniques for acceleration of control flow execution on cgra.
ACM Transactions on Architecture and Code Optimization (TACO),
10(2):8, 2013.

12

Mahesh Balasubramanian is a Ph.D. student at
Arizona State University. He received his Masters in
Electrical Engineering from the University of Texas
at San Antonio and bachelors from Anna University,
Chennai, India. His research interests lie in area
of parallel computing and co-processor accelerators
like CGRAs particularly for general purpose and
HPC applications. He is a recipient of CIDSE Doc-
toral Fellowship, Engineering Grad Fellowship, and
Ferdinand A. Stanchi Fellowship at Arizona State
University.

Aviral Shrivastava is a Professor in the School
of Computing Informatics and Decision Systems
Engineering at the Arizona State University, where
he has established and heads the “Make Program-
ming Simple (MPS)” lab. He received his Ph.D. and
Masters in Information and Computer Science from
the University of California, Irvine, and bachelors
in Computer Science and Engineering from Indian
Institute of Technology, Delhi. He is a 2011 NSF
CAREER Award Recipient, and recipient of 2012
Outstanding Junior Researcher in CSE at ASU. His

works have received several best paper nominations, including at DAC 2017,
and a best student paper award at VLSI 2016. His students have received
outstanding Ph.D. student award in CSE @ ASU in 2017, and outstanding
MS student award in CSE at ASU in 2012 and 2010. Prof. Shrivastava’s
research lies in the broad area of “Software for Embedded and Cyber-
Physical Systems.” More specifically, Prof. Shrivastava is interested in topics
around i) Compilers and microarchitectures for heterogeneous and many-
core computing, ii) protecting computation from soft errors, and iii) Precise
timing for Cyber-Physical Systems. His research is funded by NSF, DOE,
NIST, and several industries including Microsoft, Raytheon Missile Systems,
Intel, Nvidia, etc. He serves on the organizing and program committees
of several premier embedded system conferences, including DAC, ICCAD,
ISLPED, ESWEEK, and LCTES. He is currently serving as deputy editor in
chief of IEEE Embedded Systems Letters, associate editor for ACM Trans-
actions Embedded Computing Systems (ACM TECS), IEEE Transactions on
Computer-Aided Design (IEEE TCAD), and Springer International Journal
on Parallel Processing (Springer IJPP), and Springer Design Automation for
Embedded Systems (Springer DAEM). He has served as the program chair of
CODES+ISSS 2017 and 2018, and LCTES 2019, and is currently the virtual
conference chair of ESWEEK 2020, and track chair for RTSS 2020

