
Appears in the Proceedings of the Design Automation and Test in Europe (DATE), 2018

LASER: A Hardware/Software Approach to
Accelerate Complicated Loops on CGRAs

Mahesh Balasubramanian∗, Shail Dave∗, Aviral Shrivastava∗, Reiley Jeyapaul†
∗Compiler Microarchitecture Lab, Arizona State University, Tempe, AZ

†ARM, Cambridge, United Kingdom
Email: {mbalasubramanian, shail.dave, aviral.shrivastava}@asu.edu, {reiley.jeyapaul}@arm.com

Abstract—Coarse-Grained Reconfigurable Arrays (CGRAs)
are popular accelerators predominantly used in streaming, filter-
ing, and decoding applications. Due to their high performance
and high power-efficiency, CGRAs can be a promising solution
to accelerate the loops of general purpose applications also.
However, the loops in general purpose applications are often
complicated, like loops with perfect and imperfect nests and
loops with nested if-then-else’s (conditionals). We argue that
the existing hardware-software solutions to execute branches
and conditions are inefficient. In order to efficiently execute
complicated loops on CGRAs, we present a hardware-software
hybrid solution: LASER – a comprehensive technique to ac-
celerate compute-intensive loops of applications. In LASER,
compiler transforms complex loops, maps them to the CGRA,
and lays them out in the memory in a specific manner, such that
the hardware can fetch and execute the instructions from the
right path at runtime. LASER achieves a geomean performance
improvement of 40.91% and utilization of 43.43% with 46%
lower energy consumption.

I. INTRODUCTION

Accelerators have now become an integral part of the
modern processor design to accelerate specialized or compute-
intensive part of the code. CGRAs are programmable, yet
power-efficient accelerators [1]. As shown in Fig 1, a CGRA
is an array of processing elements (PEs) connected in a
2-D mesh. Each PE consists of functional unit (FU) for
computation, and a register file (RF) to store values. The
PEs can get inputs from the neighboring PEs, RF or the data
memory. In each cycle, instructions to be executed are issued
to every PE. The performance and power-efficiency of CGRA
rely on the compiler technology [2]–[4].

The main advantage of CGRAs over custom ASIC (Ap-
plication Specific Integrated Circuit) and FPGA (Field Pro-
grammable Gate Arrays) accelerators is the higher-level of
programmability. CGRAs can be programmed at instruction-
level, whereas FPGAs are programmed at bit-level [5]. This
makes programming much simpler for CGRAs. As opposed
to GPUs (Graphics Processing Units), CGRAs can accelerate
non-parallel loops also [6].

CGRAs are popular in streaming applications, e.g., set-top
boxes, TVs, projectors, for filtering and decoding [1], [7], [8],
and over the years, several compiler techniques have been
developed to map the innermost loops without conditionals
(if-then-else) in the applications on CGRAs [2], [3], [5]. Our
vision is to exploit the advantages of CGRAs in general-
purpose processors to accelerate compute-intensive loops of

PE

PE

D
a

ta
 M

e
m

o
ry

PE

PE

Instruction Memory

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

FU

reg

Data Output

Data

 Register
File

Predicate
Register

File

reg

Predicate Output

Predicates

From Neighbors & BUS

Data

Fig. 1: A 4x4 CGRA with PEs connected in a 2-D mesh.
PE consists of an ALU and RF. Additional predicate RF and
mux (shaded) are required in each PE by full and partial
predication.

general-purpose applications. However, the compute-intensive
loops in real general-purpose applications are complex. They
often feature several levels of loop nests and nested condition-
als, which can be perfect or imperfectly nested (nested loops
where the outer loops contains the inner loops along with one
or more assignments). Mapping imperfectly nested loops also
requires the ability to map loops with conditionals, since they
must be (and can be) converted into loops with conditionals.

The state-of-the-art CGRA compiler techniques cannot map
complex loops or give out a mapping that achieves only
marginal speedups. The most popular approach to map loops
with conditionals is to use partial predication [9]. While this
approach can be applied to loops with arbitrary nesting of
conditionals, it increases the number of operations to be
executed. For our set of compute-intensive loop kernels from
MiBench [10], the partial predication approach will increase
the number of operation and seriously degrades the ability of
CGRA to accelerate the kernel.

To execute complicated loops (with imperfectly nested loops
and arbitrary nesting of conditionals), we propose a hardware-
software hybrid solution: LASER – Loop Acceleration by
Selective Execution on CGRA. This technique enhances the
abilities of both compiler and hardware for achieving max-
imum power efficiency and performance. LASER compiler,
converts the nested loops into a single loop with conditional
statements and fuses the operation of both paths of the condi-
tional (the true-path and the false-path) to the CGRA, so that
only one of them is issued and executed. This ensures high-

1

for(i=0;i<10;i++)
{a = a + 1;
 b = b + 1;
 c = a*b;
 if (x%i == 1)
 d = c+1;
 else
 d = b+1; }

a

c

b i

cmp

dt df

d

1

1

2

3

4

Time PE1 PE2 PE3 PE4

a b i

cmpc

a b i

i

i

i

i

dt

df

df

df

cmp

d

II
=
3

(e) (f) (g)

for(a=0;a<10;a++)
{b = a + 10;
 c = a * 2;
 d = b / 4;
 e = d + c;}

(a)

a

b c

d

e

1

(c)

a

a

a

1

2

3

4

Time PE1 PE2 PE3 PE4

a

c

a

e

d

(d)

b

II
=
2

1 R1
R2 2 R1

R2

3 R1
R24 R1

R2

(b)

c

c

a

a

a

11

i

Fig. 2: a) A simple loop to be accelerated on CGRA (b) Flattened 2×2 CGRA where each PE has 2 registers (c) Data-
Dependence Graph (DDG) of a simple loop (d) Mapping of the DDG onto the CGRA with II=2. (e) A loop with an if-then-else
(f) DDG of the loop with Partial Predication (f) Mapping of DDG on 2×2 CGRA with II=3.

utilization of resources of CGRA. The instruction fetch unit
enhancement ensures that only the correct instruction is issued
at runtime, based on the branch outcome. LASER outperforms
the state-of-the-art partial predication with 43.43% better
utilization of PE resources and 40.91% better performance.

II. BACKGROUND AND TERMINOLOGY

Fig 2(a)-(d) explains how a CGRA executes a compute
intensive loop. Fig 2(a) shows a simple loop with 4 operations,
to be executed on a 2×2 CGRA (Fig 2(b)), in which each PE
has 2 registers. The compiler constructs a Data Dependence
graph (DDG) of the loop (as shown in Fig 2(c)). DDG is a
graph, in which each node represents an operation in the loop
and edges represent the dependency between the operations.
Fig 2(d) shows the mapping of nodes of the DDG to CGRA
at different time. The iterations are software-pipelined [3], [5],
[8], and the next iteration of the loop can begin in cycle
4 (denoted by a as shaded node). The interval between the
beginning of consecutive iterations is known as the initiation
interval (II). The II of this mapping is 2. II is the performance
metric of CGRA and lower the II, better the performance.

III. LIMITATIONS OF RELATED WORK

Previous compiler techniques such as [2], [3], [5] accelerate
only the innermost loop and fall short in accelerating rest of
the loop nest which in turn has to be executed on a core. The
communication overhead also multiplies if the trip count of
outer-loop is higher. Existing techniques such as [11], [12] are
restricted to handle only perfectly nested loops with 2-level.
On the other hand, flattening based approach of [13] is promis-
ing but restricts the scalability because of its hardware-based
solution with modified PE architecture. Major techniques to
accelerate loops with conditionals are - (i) Full predication,
(ii) Partial Predication, (iii) Dual-Issue and (iv) Path Selection
Based Mapping (PSB). Full and partial predication schemes
requires predicated register files and muxes (shown in Fig 1
shaded) to communicate the branch outcome. Full predication
maps the nodes from both the if- and else- path on the same
PE, but at different time, so that correct value is updated at the
end of the execution [6]. Partial predication allows execution
of nodes from both paths simultaneously but correct outcome

needs to be selected through additional select node [9]. Dual
issue schemes such as [6] fetches instructions for both paths
but executes instructions of only correct path based on the
branch condition, but requires additional mux in each PE to
select the if-path or else-path instructions and is applicable to
single-level only. Path selection based approach [4] selectively
issues the instruction based on the branch outcome, but is
applicable to only single if-then-else. For nested-conditionals
PSB relies on partial predication. In this paper, we evaluate
partial predication as it is the only technique that can map
loops with nested conditional at lower II.

A. Partial Predication incurs high overhead

In partial predication, the nodes of DDG from both true
and false paths can be mapped on different PEs and a select
operation is required to choose the correct outcome based
on the condition evaluated. Fig 2(e) shows a simple loop
with conditional, while Fig 2(f) shows DDG using partial
predication. Node cmp represents condition x%i==1. Nodes
dt and df are true and false paths of d and a selection
operation is added. Mapping of the DDG is shown in Fig 2(g)
with II is 3. Due to the additional nodes required by partial
predication, if a variable is computed inside the innermost nest
of if-then-else, there is a corresponding node for operation
inside each if-path and an else-path and so is a selection.
Applying partial predication on a loop with nested conditional
in Fig 3(a), we get DDG shown in Fig 3(b). Mapping DDG
on 2×2 CGRA yields II of 11. Partial predication method
increases the number of nodes in accelerating performance-
critical loops with nested conditionals and the nested loops
from MiBench benchmark suite. Clearly, there is no technique
that can accelerate nested loops and nested conditionals with
less overhead.

IV. OUR APPROACH

The compiler transforms arbitrary nested (perfect or imper-
fect) loops into a single loop with nested conditional by loop
flattening [13]. Fig 4 shows the transformation of a simple
nested loop into a single-level loop with nested conditional.
In some special cases, nested loops cannot be converted into

2

1:for(i=0;i<10;i++){
2: if (x%i==1){d+=0;
3: if (y%i==1){
4: a+=0;
5: b+=0;
6: c+=0;}else{a=a+1;
7:
8:

 b=b+1;}}
else d=d+1; }

(a)

(b)

Fig. 3: (a) A loop with nested conditional (b) DDG using
partial predication results in 31 nodes.Nodes h and g represent
conditions x%i==1 and y%i==1.

a single loop1. However, in general, loop flattening is needed
to convert a nested loop to a loop with conditional statements.
Executing branches on CGRA is challenging due to the lack
of support from the CGRA’s instruction fetch unit (IFU). The
existing CGRA IFU issues instructions sequentially from the
instruction memory and hence cannot jump memory addresses
in case of conditional operations. In LASER, we enhance the
CGRA IFU functionality to issue only the instructions of the
correct path2 at runtime. For the correct-path instructions to
be issued by the IFU, LASER compiler lays out the program
instruction in a specific way such that the IFU jumps to the
exact memory location of instruction of the correct-path and
issue them at runtime.

With this IFU support to issue correct-path instructions, if
a variable c is updated in both true and false path, mapping ct
and cf on different PEs without a select operation will lead to
an incorrect execution. This is because the compiler generates
instructions statically and since the correct-path executed is
unknown at the static time, the PE that will hold the correct
value of c at the end of the execution is also unknown. This
discrepancy can lead to errors in the value of c at the end of
program execution. To overcome this, LASER compiler fuses
the true-path operation and false-path operation of the variable

1If a loop contains sibling loops, flattening based approach may be
impractical, so a loop fission approach [13] should be used. We did not come
across any compute-intensive loops that have sibling loops, in our experiments.

2Either true-path or false-path based on the branch outcome at runtime.

for (;cond1;) {
/*statements*/
for (;cond2;) {
/*statements*/
}
/*statements*/

}

(a)

for (;cond3;) {
if(cond4) {
/*outer for-loop statements

and iterator calculations*/
}

else {
/* inner for-loop statements

and iterator calculations*/
} }

(b)

Fig. 4: (a) An imperfectly nested loop with cond1 and cond2
conditions (b) Flattening converts (a) into single-level loop
with conditionals with new cond3 and cond4

into a single node, 〈ct, cf 〉. This single fused node is mapped
to only one PE of the CGRA and only one instruction (either
true-path or false-path) is issued at runtime by the IFU. After
the execution of the instruction the PE on which the fused
node was mapped, holds the correct value of c. Similarly, if a
variable d is updated in only one path (only in true-path (dt)
and not updated in the false-path) the compiler creates a no-
operation (nop) for the false path and performs the fusing. The
fused node will now have 〈dt, nop〉, which means that if the
branch condition is true dt is issued by IFU otherwise a nop is
issued. LASER compiler transforms complicated loops, maps
them on to the CGRA architecture and lays the instructions in
the memory in a specific manner, such that the IFU can fetch
the instructions from correct-path at runtime.

A. LASER – Compiler

By evaluating the condition of a nest a priori and then
mapping the true and false path of the nest on to the same PE,
LASER-compiler reduces the total number of nodes created.
For example, in the program of Fig 3(a), the assignments to
the variable a are inside a nested if-then-else (if-else inside
another if-else). So, for a conditional nest of two, four different
assignments for variable a are possible. Corresponding four
nodes (or operations) are fused as a single node by LASER-
compiler. At runtime, correct instruction out of four possible
instructions can be provided to the PE to execute the operation
from the nested conditional.

Our heuristic targets fusing nodes from different if-else
paths pertaining to the conditional nest. Pairing is done with
operations from the innermost if-then-else (i.e., one with
highest conditional depth d). The unbalanced operations (i.e.
one path has more operations than the other) are paired with
a no-op. For example, in program of Fig 3(a), operations
corresponding to variables a, b and c are fused first. Hence,
〈att, atf 〉 and 〈btt, btf 〉 are fused nodes, as shown in Fig 5(a).
Such pairing is one-to-one with operations from both the paths.
In our example, innermost if-path has 3 operations compared
to 2 operations inside respective else path. Hence, the unbal-
anced operation ctt is fused with a no-op. Note that we do
not need any selection among the operations from if-path and
else-path so, corresponding select operations are eliminated
during this DDG transformation. Once the operations of the

3

PE1 PE2 PE3 PE4

1 d h idle b

2 dt g c a

3 att idle ctt btt

4 atf idle nop btf

5 df nop c a

6 ao idle co bo

7 nop idle nop nop

8 idle i idle ac

d

a b c

dt, df

att, atf

ao, nop

btt, btf

bo, nop

ctt, nop

co, nop

i1

h

(a)

(b)

1 2

34

g, nop

Time PE1 PE2 PE3 PE4

(c)

i

i b

dc i b

dc i cc bc

i

hd

a

b

cdt, df

btt, btf

bo, nop

att, atf

ao, nop
ctt, nop

co, nop

i

1

2

3

4

II =
 4

dc i cc bc
ac

5

g, nop

k2 = 1 for

innermost

condition g

k1 = 3 for

condition h

Path

selected

when h

is true

Path

selected

when h

is false

g = 1

g = 0

(d)

1

1

1

1

ac

Fig. 5: (a) DDG obtained from LASER-compiler for loop of Fig 3. Nodes from multiple if-paths and else-path to a single
node. If such path is absent, balancing no-ops are added and a node such as ao preserves the old value. (b) 2×2 CGRA where
each PE has 2 registers. (c) Mapping with II = 4. (d) Instructions are selectively issued during the execution of the kernel.

innermost conditional are fused (i.e. y%i == 1), operations
from outer nests can be fused iteratively. So, operations of the
conditionals with nest depth of d− 1 can be fused where d is
the highest depth. Thus, we fuse all the operations associated
with the condition x%i == 1. The compiler iterates on the
entire conditional nest and produces DDG with the fused
nodes as shown in Fig 5. Mapping can be then obtained with
mapping techniques such as [2], [5]. Mapping the DDG with
the fused nodes, obtained from LASER-compiler is like any
other mapping with CGRAs. The fused nodes can be also
routed to satisfy data-dependency and necessary values are
stored in the register file3.

After obtaining the mapping for CGRA PEs, compiler
generates instructions to support the execution of conditional
nest. One such layout of instructions for CGRA PEs is shown
in Fig 5(d). Instructions are grouped in particular manner
so that hardware can easily issue the needed instructions
based on the condition evaluated. Compiler associates k value
with each of the conditional, which is simply number of the
CGRA instructions associated. For example, first condition
h (x%i == 1) is evaluated on PE2 which is associated
k1=3 because maximum number of cycles required to execute
the if-path or the else-path for h are three. If this condition
is true, PEs should be given next three instructions from
location 2– 4. In this case, PE2 is issued another conditional
g (y%i == 1). g is associated with k2=1 as all fused
nodes related to conditional g are mapped on PEs in a single
cycle (time 4 in Fig 5(c)). So, only one instruction for each
of CGRA PEs is enough to execute either if or else-path
corresponding to g. If g is evaluated as false, k2=1 instruction
will be skipped at run-time. Once instructions from location
2–4 are issued, if-path corresponding to h gets over and next
k1=3 instructions are skipped, which corresponds to else-path
of the outer conditional h. Then, instruction at location 8
can be executed allowing independent operations and kernel
instructions executes from the location 1 again. Before the

3In Fig 5(c) fused node 〈〈att, atf 〉, 〈ao, nop〉〉 is routed (named as ac)
and the correct value of a is also stored in a register of PE 4 for later usage.

architecture can support the execution in such fashion, it is
the compiler’s job to associate corresponding k values with
CGRA instructions and to configure the hardware correctly.

As shown in Algorithm 1, our heuristic first determines
conditional with highest nest depth and pairs the nodes from
both if and else paths. Pairing can proceed until there is an
operation in if-path or else-path (line 5). If no such path exists
or if the number of nodes in either of the paths is unbalanced,
we need to fuse the nodes with no-ops (lines 8-11). Such
assembling results in fused nodes after iterative pairing (lines
3-15). While forming the DDG, compiler preserves the data

Algorithm 1 FuseNodes (Input DDG D, Output DDG P)

1: d← getHighestConditionalDepth()
2: for i = d to 1 do
3: ni

if ← getLastNode(N i
if)

4: ni
else ← getLastNode(N i

else)
5: while ni

if 6= NULL or ni
else 6= NULL do

6: if ni
if ∈ N i

if and ni
else ∈ N i

else then
7: fuse(ni

if , n
i
else)

8: else if ni
if ∈ N i

if and ni
else == NULL then

9: fuse(ni
if , nop)

10: else if ni
if == NULL and ni

else ∈ N i
else then

11: fuse(nop, ni
else)

12: end if
13: ni

if ← getLastRemainingNode(N i
if)

14: ni
else ← getLastRemainingNode(N i

else)
15: end while
16: for ni

j such that j = 0 to |N | do
17: if nj

i is an eligible select operation ∈ N j
other,3

input1(nj
i), input2(n

j
i) = mfused ∈Mfused then

18: Eliminatephi(n
j
i)

19: end if
20: end for
21: RemoveRedundantArcs(E)
22: PrunePredicateArcs(E)
23: end for

4

0

0.2

0.4

0.6

0.8

1

m
ad

su
sa
n_

sm
oo

th
in
g

su
sa
n_

co
rn
er

su
sa
n_

ed
ge
s_
1

su
sa
n_

ed
ge
s_
2

su
sa
n_

th
in

jp
eg
_d

ec
od

e
ad
pc
m
_e
nc
od

in
g

ad
pc
m
_d

ec
od

in
g fft

gs
m
_1

gs
m
_2

Ge
om

ea
n

m
ad

su
sa
n_

sm
oo

th
in
g

su
sa
n_

co
rn
er

su
sa
n_

ed
ge
s_
1

su
sa
n_

ed
ge
s_
2

su
sa
n_

th
in

jp
eg
_d

ec
od

e
ad
pc
m
_e
nc
od

in
g

ad
pc
m
_d

ec
od

in
g fft

gs
m
_1

gs
m
_2

Ge
om

ea
n

m
ad

su
sa
n_

sm
oo

th
in
g

su
sa
n_

co
rn
er

su
sa
n_

ed
ge
s_
1

su
sa
n_

ed
ge
s_
2

su
sa
n_

th
in

jp
eg
_d

ec
od

e
ad
pc
m
_e
nc
od

in
g

ad
pc
m
_d

ec
od

in
g fft

gs
m
_1

gs
m
_2

Ge
om

ea
n

4x4 8x8 16x16

II	n
or
m
ali
ze
d	r
o	P

ar
tia

l	P
re
di
ca
tio

n

Performance	of	LASER	normalized	to	Partial	Predication

57.21% 61.95% 58.10%

Fig. 6: LASER is a scalable solution with 40.91% cumulative geomean reduction in II compared to partial predication.

dependencies throughout such fusing. After all operations in
if-and-else paths are paired for a particular conditional (with
any depth), eligible select operations are eliminated via a
phi elimination. Then the redundant edges are eliminated and
predicate arcs are pruned, which is shown at lines 16-22.

B. LASER – Architecture

LASER-compiler relies on Instruction Fetch Unit (IFU)
support to jump to the correct instruction in the instruction
memory and issue only those instructions based on the branch
outcome. LASER-architecture is shown in Fig 7 which aids
in selectively issuing the instructions throughout the loop
execution. The IFU keeps track of the all the conditions being
evaluated in the loop. Once a PE encounters a conditional

MMUInterface with core
(code and data)

Instruction Fetch Unit

Branch
Outcome

Fetch
Signals

Instruction
Memory

Fetch Signal
Generator

16 x 32

Encoded
Fetch
Signal

Decoded
PE Configurations

Branch Outcome

From PEs

<PC, Predicate>

Conditional Look-aside
Buffer (CLB)

16 x 32

(From the conditional
instruction executed)

PC [K]

Instruction buffer

Condition
instructions and

offsets are loaded
into the buffer
when fetched.

Instruction Fetch Unit

MMU

16 x 1

Fig. 7: LASER-Architecture to accelerate complex loops.
PEs do not have a predicate network. Branch outcome is
communicated to the IFU to issue instructions selectively
based on the path taken at runtime.

node and evaluates the outcome, it communicates that to the
instruction fetch logic. Based on the information about the
latest branch outcome, IFU can lookup in conditional look-
aside buffer (CLB) to determine the number of instructions
(k) associated with that condition. CLB keeps track of the
information about PC of the conditional instruction and cor-
responding k value. So, if the condition evaluated is false,
hardware can look-up for needed k value and IFU skips k
instructions. To correctly determine the ki value, the hardware
maintains a state register which gets incremented when a new
conditional is evaluated. During execution of the path for a
conditional, corresponding cycle counter keeps incrementing
by 1. Once the cycle counter reaches the value ki, it means
that all ki instructions for the path of condition Ci is executed
and now it should again execute the instructions from the path
of the higher condition nest.

V. EXPERIMENTAL RESULTS

We profiled MiBench and extracted 12 compute-intensive
loops which are nested and/or have conditional nest. We
implemented LASER-compiler in the DDG construction stage
to correctly fuse the nodes of the true and false paths. LASER-
compiler can be used with any mapping technique for mapping
the nodes onto the CGRA. We compare LASER with partial
predication scheme – only viable approach to map loops with
nested conditionals. For evaluation, we used REGIMap [5] to
map the DDG obtained from LASER and partial predication.
PEs perform fixed-point operations with 1-cycle latency and
have 4 local registers. The memory bus is shared among PEs
in a row. For load and store operations, two instructions are
executed, one generates the address and second loads/stores
the data.

A. LASER reduces nodes by 43.43%

Partial predication scheme requires three nodes to correctly
execute an operation (true and false paths, and a selection)
and increases total nodes to be mapped drastically. In Fig 8
the vertical axis denotes the number of nodes normalized
to partial predication and the horizontal axis denotes various
benchmarks. Due to fusing of nodes and elimination of select

5

0

0.2

0.4

0.6

0.8

1
No

.	o
f	n

od
es
	n
or
m
al
ize

d	
to
	P
ar
tia

l	
Pr
ed

ic
at
io
n

Performance	of	LASER	normalized	to	Partial	Predication

56.57%

Fig. 8: LASER reduces nodes by 43.43%

operation, LASER reduces the nodes by 43.43%. LASER
achieves much better utilization with increase in depth of
nested conditionals and with increase in number of operations
inside the nests e.g., susan corner has a depth of 24, resulting
in the geomean reduction of 64%, but gsm 2 shows very less
reduction, as it has only 2 operations in a conditional.

B. LASER scales better while mapping with 40.91% better
geomean performance compared to partial predication.

Fig 6 shows the comparison of II achieved with partial
predication and LASER for different CGRA sizes 4×4, 8×8
and 16×16. Compared to partial predication, LASER has
a geomean performance improvement of 42.79% on 4×4
CGRA. As the size of CGRA increases to 8×8, the geomean
II reduction for LASER was 38.05%, compared to partial
predication. For 16×16 CGRA the geomean II reduction is
41.9%. LASER achieves consistent performance improvement
with a cumulative geomean reduction of 40.91% across all
three configurations of CGRA.

C. LASER reduces energy by 46%

We implemented the RTL model of LASER-architecture
shown in Fig 7, and for comparison with partial predication
a 4×4 CGRA with predicate network in each PE (Fig 1
including shaded portions) was implemented. Both the models
were synthesized in 32nm using RTL compiler. The power is
estimated by Cadence RTL power estimation tool. From the
power numbers obtained, we estimated the energy consumed
(given in [14]) by LASER and partial predication to accelerate

0

0.2

0.4

0.6

0.8

1

EN
ER

GY
	C
O
NS

UM
PT
IO
N	
NO

RM
AL
IZ
ED

	
TO

	PA
RI
TA
L	
PR

ED
IC
AT
IO
N

Average	Reduction	in	Energy	Consumption
Energy	Consumption	of	LASER	normalized	to	Partial	Predication

45.78%

Fig. 9: LASER reduces energy by 46%

the loops of MiBench benchmarks. Energy consumed (nJ)
is given by E = clock cycle × critical path delay(ns) ×
Power(W). Fig 9 shows that LASER consumes on an average
45.78% less energy compared to partial predication.

VI. CONCLUSION

To accelerate general purpose applications with computation
bottlenecks as nested loops and nested conditionals, CGRA
should behave more like a general purpose modern processor
with operationally enhanced IFU, to issue only the correct
instruction. State-of-the-art compilers impose a high overhead
to accelerate loops with only marginal performance improve-
ment. We have presented LASER, a novel hardware-software
approach where, LASER compiler fuses the nodes of various
paths of the conditionals, and IFU issues selectively only
correct instructions based on the branch outcome. LASER
exceeds the state-of-the-art partial predication in accelerating
complicated loops efficiently, with 43.43% node reduction and
40.91% better performance.

ACKNOWLEDGMENT

This work was partially supported by funding from National
Science Foundation grants CCF 1055094 (CAREER), CNS
1525855 and CCF 1723476.

REFERENCES

[1] Allan Carroll, Stephen Friedman, Brian Van Essen, Aaron Wood,
Benjamin Ylvisaker, Carl Ebeling, and Scott Hauck. Designing a coarse-
grained reconfigurable architecture for power efficiency. In DOE NA-22
University Information Technical Interchange Review Meeting, 2007.

[2] Hyunchul Park, Kevin Fan, Scott A Mahlke, Taewook Oh, Heeseok Kim,
and Hong-seok Kim. Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures. In PACT. ACM, 2008.

[3] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Epimap: Using
epimorphism to map applications on cgras. In DAC. IEEE, 2012.

[4] ShriHari RajendranRadhika, Aviral Shrivastava, and Mahdi Hamzeh.
Path selection based acceleration of conditionals in cgras. In DATE,
2015.

[5] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Regimap:
register-aware application mapping on coarse-grained reconfigurable
architectures (cgras). In DAC. ACM, 2013.

[6] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Branch-aware
loop mapping on cgras. In DAC. ACM, 2014.

[7] Navneet Basutkar, Ho Yang, Peng Xue, Kitaek Bae, and Young-Hwan
Park. Software-defined dvb-t2 receiver using coarse-grained reconfig-
urable array processors. In ICCE. IEEE, 2013.

[8] B Mei, M Berekovic, and JY Mignolet. Adres & dresc: Architecture
and compiler for coarse-grain reconfigurable processors. In Fine-and
coarse-grain reconfigurable computing. Springer, 2007.

[9] Kyuseung Han, Junwhan Ahn, and Kiyoung Choi. Power-efficient
predication techniques for acceleration of control flow execution on cgra.
TACO, 2013.

[10] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. Mibench: A free, commercially
representative embedded benchmark suite. In WWC-4. IEEE, 2001.

[11] Yongjoo Kim, Jongeun Lee, Toan X Mai, and Yunheung Paek. Im-
proving performance of nested loops on reconfigurable array processors.
TACO, 2012.

[12] Dajiang Liu, Shouyi Yin, Leibo Liu, and Shaojun Wei. Polyhedral model
based mapping optimization of loop nests for cgras. In DAC. IEEE,
2013.

[13] Jongeun Lee, Seongseok Seo, Hongsik Lee, and Hyeon Uk Sim.
Flattening-based mapping of imperfect loop nests for CGRAs. In
CODES+ISSS. IEEE, 2014.

[14] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-
Shiuan Peh. Hycube: A cgra with reconfigurable single-cycle multi-hop
interconnect. In DAC, page 45. ACM, 2017.

6

