
Automatic and Efficient Heap Data Management for
Limited Local Memory Multicore Architectures

Ke Bai, Aviral Shrivastava
Compiler and Microarchitecture Laboratory

Arizona State University, Tempe, Arizona 85281, USA
Email: {Ke.Bai, Aviral.Shrivastava}@asu.edu

Abstract—Limited Local Memory (LLM) multi-core archi-
tectures substitute cache with scratch pad memories (SPM),
and therefore have much lower power consumption. As they
lack of automatic memory management, programming on such
architectures becomes challenging, in the sense that it requires
the programmer/compiler to efficiently manage the limited local
memory. Managing heap data of the tasks executing in the cores
of an LLM multi-core is an important problem. This paper
presents a fully automated and efficient scheme for heap data
management. Specifically, we propose i) code transformation
for automation of heap management, with seamless support for
multi-level pointers, and ii) improved data structures to more
efficiently manage unlimited heap data. Experimental results on
several benchmarks from MiBench demonstrate an average 43%
performance improvement over previous approach [1].

I. INTRODUCTION

As we transit from a few cores to many cores, scaling the
memory architecture is a major challenge. Cache coherency
protocols [2] do not scale well with the number of cores, and
therefore maintaining the illusion of a single unified memory
in hardware is becoming difficult. As a result, the distributed
nature of the memory organization is being exposed to the
software. One possible distributed memory architecture is the
Non Coherent Cache architecture, which has been tried on the
Intel SCC [2]. However, caches still consume a lot of power
and die area. One option for a more power-efficient memory
hierarchy is to use raw, “un-cached” memory (commonly
known as scratch pad memory) in the cores. Scratch pad
memory (SPM) consumes 30% less area and power [3] than
a direct mapped cache of the same effective capacity. A
multi-core architecture in which each core has a SPM instead
of cache, and only the core can access its own SPM (and
therefore, we refer to it as local memory) is called a Limited
Local Memory (LLM) multi-core architecture. The IBM Cell
BE [4] is a good example of LLM multi-core architectures.

LLM multi-core architecture is a truly distributed memory
architecture on a chip. Consequently, applications have to
be written as a bunch of interacting tasks or processes, and
the tasks get mapped to the cores of the LLM architecture.
Conventionally, main task executes on main core and creates
execution tasks, which are then distributed and executed on
execution cores. The global (main) memory is attached to main
core, and execution cores only have a limited size of local
memory. The execution core can only access its local memory,
which implies that load and store instructions can only access

This research was partially funded by grants from National Science Foun-
dation CCF-0916652, IIP-0856090, and NSF I/UCRC for Embedded Systems.

the local memory. Global memory can only be accessed
through a special DMA instruction. More importantly, the
space of local memory has to be shared between code, stack,
global and heap data of the task executing on the core. If
the task can be fit into the local memory, then highly power-
efficient execution is achieved. For example, power efficiency
of the IBM Cell BE is around 5 GFlops per watt [4]. Contrarily,
Intel i7 4-core Bloomfield 965 XE can only achieve 0.5 GFlops
per watt [5], [6]. However, if memory footprint of the task is
larger than the size of the local memory, then the data of the
task must be explicitly managed through the use of special
DMA instructions. To do this, the programmer must not only
be aware of the local memory available in the architecture,
but also be cognizant of the memory requirements of the task
at every point in the execution of the program. This is very
difficult for C/C++ programs, as even though the code and
global data sizes are fixed after compilation, stack and heap
sizes may be variable and data dependent. Therefore a task
that works for a set of inputs may fail for another. On top
of this, SPMs are unforgiving in the sense that SPMs just
return the data at the requested location. There is no way of
checking if the programmer forgot to fetch some data1. This
is not a problem in cache-based architectures, as hardware
brings the required data. Therefore debugging is significantly
harder on such architectures. Programmers having to worry
about data management has been the biggest roadblock in
the success of otherwise very power-efficient LLM multi-core
architectures. This burden on the programmers can be relieved
through automatic data management solutions.

While management is needed for all code and data on the
local memory, managing heap data is especially important,
since it is dynamic in nature and may not be known at compile
time. Although some works have been done towards managing
heap data on SPM [7]–[9], they are not directly applicable
to LLM architectures [1]. In embedded systems, e.g., ARM
processors, the SPM was in addition to the regular memory
hierarchy, while in LLM multi-core architecture, SPM is an
essential part of the memory hierarchy. Therefore, previous
schemes only managed frequently used heap data in SPM, in
LLM multicores we need to manage all heap data in SPMs.
The only work for heap data in LLM multi-core architectures
was proposed by Bai et al. [1]. Since it requires users to
manually use their management functions for each heap pointer
access, it could be tedious and error-prone. In addition, the
overhead of Bai’s scheme can be reduced through a better
management data structure.

1Of course there are mechanisms to make sure that the data you requested
has arrived in the memory, but if the programmer does not check or forgets
to fetch, then SPMs will just return the old data.978-3-9815370-0-0/DATE13/ c© 2013 EDAA



This paper proposes a fully automated and efficient heap
data management for LLM multicore architectures. It consists
of a modified GCC compiler (GCC 4.1.1) and an efficient
heap data management runtime library. Through automatic
code transformations, our automated framework unburdens the
programmer of the task of API function insertion. Our automa-
tion is complete, and also works for multi-level pointers. To
reduce the runtime overhead of heap data management, we ex-
amined several heap cache design parameters (block size, and
associativity), and heap cache design options (victim buffer).
Experimental results on several benchmarks from MiBench
demonstrate that our work improves application performance
by an average of 43% over previous scheme [1]. We found
that for our set of benchmarks, a 4-way set associative heap
cache without victim buffer is the best choice on average.

II. PREVIOUS WORK

The local memory in each core of LLM multi-processors
is a scratch pad memory or SPM, and is under software
control. Although power-efficient, programmers must manage
data on the SPM, since SPM lacks memory management
logic in the hardware. To simplify programming on processors
that feature SPM, several schemes have been proposed to
manage code [11]–[19], global data [17], [18], [20]–[22], stack
data [9], [15], [22], [25], and heap data [7]–[9]. However,
these techniques cannot be directly applied to LLM multi-
core architectures. This is because of the difference in the way
SPMs have been traditionally used, and the way they are used
in LLM multi-core architectures. In embedded systems, e.g.,
ARM processors, the SPM is present in addition to the regular
cache hierarchy of the processor. Programs can be executed
correctly without using SPM, but SPM can be used to optimize
performance and power efficiency. To do this, programmers
find the most frequently accessed data and map them to SPM.
In contrast, the local memory (or SPM) is the only memory
hierarchy in an LLM multi-core architecture and is essential,
rather than optional. All code and data must go through it.
Consequently, while the problem of using SPMs in embedded
systems is that of optimization, the problem of using local
memory in distributed memory multi-core processors is to
enable the execution of applications. Previous research has
focused on the question of “what to map” on the SPM, but
it is not even an option for LLM multi-core processors.

We have spent effort on proposing schemes to manage
code [10], stack data [23], [24], and vector data [26] for
LLM multi-core system. Work [1] is the only heap data
management scheme for LLM architecture, but it is semi-
automatic. Basically, they established a mapping between
global space and local space, and implemented a pair of
functions, g2l(ga) and l2g(la) for address translation. On
top of that, two existing functions, malloc and free were re-
implemented. Every time when malloc is called, it ensures
there is sufficient space in the local memory. If not, some
older heap objects will be evicted to global memory. Either
case will return a global address. free takes in global address
and deallocates space in global memory. A heap management
table (HMT) was used to maintain the status of heap objects,
the object addresses, etc. While comprehensive and correct,
previous approach [1] has quite high performance overhead
in addition to its requirement of manual function insertion.
The main reason is that it manages heap data in a highly

associative data structure with LRU (Least Recently Used)
replacement policy. The overhead of “heap cache” comprises
of DMA overhead and extra instruction overhead to find if
a DMA is needed. Although previous approach reduces the
number of DMAs, it incurs high overhead in the number of
instructions – and this happens at every access, rather than
every miss. Furthermore, it has to manage both heap data and
HMT, which only adds to the overhead.

III. HEAP DATA MANAGEMENT FRAMEWORK

In this paper, we propose a fully automated and low-
overhead heap data management scheme, which consists of
a modified GCC compiler and an optimized runtime li-
brary. The modified compiler can alleviate the pain of li-
brary call insertions. Our runtime library includes three heap
management functions, malloc(size), free(global addr), and
g2l(global addr). malloc only allocates space in global

memory and returns a global address. The reason a global
address is returned is that the mapping relation between global
address and local address is “many-to-one”. Using a local
address is impossible to identify two or more distinct heap
objects. free takes in global address and deallocates space in
global memory. g2l(global addr) gets global addr and looks
it up in our heap management data structure. If the heap object
pointed by global addr is not in the local memory, g2l fetches
it from global addr and put it in our data structure. Either case
will return the local address in our data structure.

Algorithm 1: Insertion of Function g2l
Input: Basic block set B, statement list S in GIMPLE

IR
Output: GIMPLE IR with the insertion of g2l

1 foreach basic block bb ∈ B do
2 foreach statement s ∈ Si, such that block statement

list Si is for bb, and Si ⊂ S,
⋃
Si = S do

3 if s contains multi-level pointers then
4 break down to single level pointers with

artificial variables, transform s to statements
with only single level pointers

5 foreach basic block bb ∈ B do
6 foreach statement s ∈ Si, such that block statement

list Si is for bb, and Si ⊂ S,
⋃
Si = S do

7 if s is a modification expression then
8 analyzeStmt (s)

9 Function analyzeStmt(stmt)
10 l ← getLeftOperand(stmt); r ← getRightOperand(stmt)

/* T is a single level ptr with the
same type as the ptr in the stmt,
and it is created by compiler */

11 if TREE CODE(r) is a reference then
12 create statement “T = g2l(r)”
13 substitute r with T in stmt

14 else if TREE CODE(l) is a reference then
15 create statement “T = g2l(l)”
16 substitute l with T in stmt

17 insert new statement into statement list right before stmt



Fig. 1. One example of the transformation from C code to GIMPLE IR

A. Compiler Implementation

Our extension of compiler is based on GCC 4.1.1. The
compiler support is implemented as a pass at the GIM-
PLE level, since GIMPLE is a language independent IR
and contains high level information, e.g., pointer information.
GIMPLE is a three-address IR with tuples of no more than
3 operands (with some exceptions like function calls), and
obtained by removing language specific construct from AST
(Abstract Syntax Tree) [27].

1) Insertion of Function g2l: Applications can have heap
pointers, stack pointers, and function pointers. Stack pointers
are pointers that point to their ancestor function frames. Differ-
entiating a function pointer and a data pointer (stack pointer
or heap pointer) is trivial and no details will be explained.
We only mention that our framework will not insert g2l for
function pointers.

As shown in Algorithm 1, the pass traverses every state-
ment in every basic block of the application. When a memory
reference is detected at line 7, the function analyzeStmt will
insert g2l. As modification expressions in GIMPLE only have
the form as “a=b” and only one of them could be a reference,
analyzeStmt only needs to check if either one is a reference.
If a reference is found, our pass creates a statement “T =

g2l(ptr)”(ptr may be l or r) and inserts the statement into the
statement list right before stmt.

The correctness of the application will not be affected when
all data pointers are inserted g2l. g2l itself can distinguish
heap pointers from stack pointers, since stack pointers and
heap pointers were initialized with local addresses and global
addresses respectively. When g2l takes in the parameter, it
checks whether the parameter is in local address space or
global address space. If it is a local address (which means a
stack pointer), the function directly returns the original address.
In addition, as our management granularity is at least at heap
object level, our framework will not be affected if a heap object
contains a function pointer as its element. For example, we
consider a statement “H→func = testFunc;”. The compiler will
use “H” as the parameter of g2l instead of “H→func”, where
func is a function pointer in the heap object H .

2) Multi-level Pointer Support: Previous scheme requires
users to manually break down all multi-level pointers to single-
level pointers. If the application is very small, this may be
possible and intuitive. However, when it is large, this becomes
formidable. Our compiler can process all multi-level pointers.
This is achieved by breaking down multi-level pointers in C
to operations containing only single-level pointers in GIMPLE
IR, with artificial pointers generated by the compiler. An
example of transformation from C to GIMPLE IR is shown in
Fig. 1, in which ptr is a pointer-to-pointer in C. In the example,
a pointer read statement is transformed to two statements in
the GIMPLE IR, with an artificial pointer D.2348 generated
by compiler. By this transformation, every statement in the
GIMPLE IR only has one single-level reference. One thing
needs to be mentioned is that, although D.2348 and ptr are

Fig. 2. Processes of looking up heap objects in 2-way associative heap cache:
(1) step 4, 5, 6 might happen. (2) When an old heap block needs to be evicted,
replacement runs in a round robin way.

both pointers, macro TREE CODE of them return var decl
for D.2348 but indirect ref for the latter one. Therefore, library
calls will only be added for ptr. After address translation,
D.2348 gets a local address, and therefore no function is
required. TREE CODE macro is a functionality provided by
GCC which can tell what kind of node a particular tree is [27].

B. Efficient Data Structure for Heap Data Management

1) Heap Cache Data Structure: Fig. 2 shows our heap
cache data structure in the local memory. It has S sets, N heap
blocks and a hash function. The data structure consists of an
array of S entries in HMT (Heap Management Table) and an
array of N heap blocks. As a set can contain several blocks,
N is therefore equal to the number of sets (S) multiplies
the number of associativity (A) (this figure shows a 2-way
associative heap cache and we support A-way associative heap
cache, where A = 1, 2, 4, 8). granularity size and Num of sets
in hash function are configured by users before compilation.
Each entry in HMT contains a tag bit, a valid bit, and a
modified bit and high bits of global addresses. There is a
“one-to-one” static mapping between the entries in HMT and
heap blocks. Therefore, it has the property that the number of
entries in HMT is equal to the number of heap blocks (N ),
which means that the size of HMT is fixed. As a result, we do
not need to manage HMT between global memory and local
memory.

We also provide a victim buffer for heap cache in the local
memory. It can be used to relieve the thrashing of heap objects.
When a heap object needs to be swapped out of heap region, it
will not directly be put to global memory but the victim buffer.
Because of this, when there is a heap miss in heap cache, we
might find the heap object is in the victim buffer and no slow
fetch from global memory is needed.

2) Implementation of g2l: Several steps involved for each
heap access are shown in Fig. 2: (1) When g2l function
takes in global addr, the hash function returns the set index
corresponding to the requested global address. (2) After finding
the set number i, the function directly goes to entry i in HMT,
where tag status for set i is stored. Then the valid tags in the
selected set are compared to the tag in the global address.
(3) After comparison, the function knows which block the



accessing heap object should be located2. Then, it can further
know the object offset of the accessing heap object in the cache
block from global addr. In this example, we suppose the offset
is 1. Finally, g2l checks the status of the accessing object in
the entry i of HMT to determine whether it is in the location
b. If there is a valid matching entries in HMT, the request is
a hit and the local address is calculated by adding the object
offset to the local address of the heap block that corresponds
to the matching entry. (4) If not, the miss handler is invoked
accordingly. It goes through the fully associative victim buffer
to find out whether the heap object is there. When heap object
hits, its local address in the block of the victim buffer will
be returned. (5) Otherwise, an old heap block following the
predefined replacement policy will be selected and evicted out
to victim buffer to make space for the coming one. Before
overwriting heap block in the victim buffer, the modified bit
of the block will be checked. If this block is dirty, it will
be written back to the global memory. (6) Otherwise, we can
directly overwrite this location. Then, it fetches the heap block
that corresponds to the requested global address from global
memory and places it in the evicted location.

3) Optimization with SIMD: Our runtime library provides
N -way (N = 1, 2, 4, 8) associative heap cache. The tag
comparisons for the implementation of 4-way associative heap
cache and 8-way associative heap cache are performed in
parallel with the SIMD (Single Instruction Multiple Data)
comparison instruction supported by the execution core (or
SPE) [4]. This SIMD programming operates on vector data
types that are 128-bits (16-bytes) long. As one entry in
HMT is a word long, and therefore 4 comparisons for a
set in 4-way associative heap cache can be finished in one
SIMD instruction. Accordingly, 8-way associative heap cache
requires 2 SIMD instructions for its 8 comparisons of a set.

4) Round Robin Replacement Policy: When a new heap
block needs to be brought into the N -way associative heap
cache, an old block is chosen to be evicted in a round-robin
fashion. Specifically, a counter is maintained for each set of
the heap cache. It indicates the index of the next block to
be evicted. Whenever a heap block is evicted, the counter is
updated by adding one and then modulo the number of blocks
in the set (e.g. 4 for 4-way associative heap cache).

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We run several benchmarks on IBM Cell BE [4] with 6
accesses of the 8 SPEs. The benchmarks include applications
from Mibench suite [28] and some other possible applications.
The benchmarks from Mibench are those that can be executed

2The block is the granularity of heap management, which means the smallest
unit of data transfers.

TABLE I. HEAP REQUIREMENT OF ALL BENCHMARKS

Benchmarks Heap Size (bytes) Exceed
MIN MAX

basicmath 0 0 no
DFS 16 16000 yes
dijkstra 16 24064 yes
fft 16 262208 yes
invfft 16 262208 yes
MST 16 24576 yes
rbTree 32 49152 yes
sha 0 0 no
stringsearch 16 4096 no

on our platform and have heap data. Table I shows the details
of heap size requirement of each benchmark. MIN is the
minimum size needed by our framework, while MAX is the
total amount of heap space required by the application (without
management). yes of Exceed means the application needs to
be managed, since it is larger than available space for heap
data in the local memory. Here the available space means the
subtraction of the size of local memory (i.e., 256KB) and sizes
of stack data, code and global data required by the program.
When comparing the number of DMAs and cache misses in
Table III, we use SimpleScalar [29] to get cache misses.

B. Supporting Limitless Heap Data

Our scheme can manage unlimited heap data of the task
mapped to the local memory. Although results scale for all
benchmarks, only rbTree is shown. This benchmark dynam-
ically allocates space for each node and creates a red black
tree. The size of the code and global data of the program is
15312 bytes in total and the remaining space is reserved for
stack data and heap data. To demonstrate our heap management
technique, we changed the number of nodes in the tree from
1 to 131072. As shown in Fig. 3, only 6800 number of nodes
can be created in the tree without any heap management, larger
than which the program will crash. The reason is that the heap
data finally use up the total available space when more number
of nodes are created in the tree.

When managed with heap data management techniques,
the application is assigned with all available space in the
local memory for its heap data and therefore there will be
no DMA till the space gets filled. By doing this, we can fairly
compare the runtime of application with and without heap data
management. Both previous scheme and ours can enable the
execution of the application with very large number of nodes,
however, ours has better performance. Detailed comparison
will be discussed in the next subsection.

C. Comparisons against Previous Approach

1) Overall Performance: In this experiment, we use 4-
way associative heap region without victim buffer for our
management, as this configuration is found to be the best
choice for most benchmarks in section IV-D. Fig. 4 shows that
the average improvement over all benchmarks is 43%. Bench-
mark basicmath and sha have no improvement, as they have
no heap data. There are two main reasons for improvement.
First, Bai et al. [1] implemented LRU (Least Recently Used)
replacement for their heap data management. Performance of
fully associative heap region is degraded by the sequential
table walking to find the valid matching address for heap data
request. In contrast, our scheme finds the corresponding set

Fig. 3. Supporting Limitless Heap Data



Fig. 4. Runtime comparison between previous scheme and our scheme

by hashing the global address of accessing heap object, which
has much less time complexity than that of table looking
up. In addition, our scheme uses low associativity for heap
data management to further reduce the overhead. Second, in
Bai’s work [1], the Heap Management Table (HMT) increases
as the number of heap objects increases. When the HMT
becomes too large to reside in the local memory, expensive
data management scheme will be employed to transfer part
of HMT entries between global memory and local memory,
which severely degraded the performance. To the contrary, the
HMT size in our scheme does not change with the increase of
heap objects, as our mapping scheme is between HMT entries
and heap blocks, rather than between HMT entries and heap
objects. In other words, the HMT in our scheme occupies
constant space and can be fit into local memory. Therefore,
the overhead incurred by HMT data transfers is avoided.

2) Management Overhead: The total overhead consists of
the number of extra instructions and the number of data
transfers (in terms of the number of DMAs) between global
memory and local memory. Table II shows the average extra
instructions incurred by each library function call, where we
can see our scheme has much less extra instructions per
call. Column hit for g2l means the accessing heap object is
residing in the local memory when g2l is called, while miss
means the accessing one is not in the local memory when g2l
is called. When miss, the function first writes back old data and
then fetches the required data to the local memory by initiating
DMA command. Table III shows the differences between the
number of cache misses and the number of DMAs. But we
must emphasize that the number of DMAs should not be fully
counted as overhead, since penalty also exist for a data miss in
the hardware cache. In SimpleScalar, we configured the cache
size equaling to the size of heap region in the local memory
and only count the misses of heap data. As shown in Table III,
both schemes perform less number of DMAs compared to the
cache based processors. It is because heap data are initiated in
the local memory and DMA happens only when local memory
is full. Another important reason is that the granularity is
coarser with heap data management, but cache line size in
cache based architecture cannot be too large. We also found
most benchmarks have less number of DMAs with our scheme,
except fft, invfft and rbTree. The overall DMAs are composed
of DMAs for heap data and HMT entries. Our scheme has no
DMAs for HMT entries. When our scheme performs better, it
means the removal of DMAs for HMT entries can compensate
more DMAs incurred by poorer temporal locality of heap data.

D. Impact of Heap Cache Parameters

1) Block Size: Fig. 5(a) shows the impact of block size
for heap cache. In this experiment, there is no victim buffer

TABLE II. DYNAMIC INSTRUCTIONS PER FUNCTION
malloc free g2l l2g

hit miss
Previous Scheme 948 50 280 373 243
Our Scheme 60 20 51 117 0

TABLE III. DMAS VS CACHE MISSES
cache DMAs
misses Previous Scheme Our Scheme

basicmath 0 0 0
DFS 26519 1987 250
dijkstra 434867 2656 154
fft 5579 27 238
invfft 5599 27 246
MST 240117 325885 396
rbTree 26519 3958 4322
sha 0 0 0
stringsearch 656 0 0

and heap objects are managed in 4-way associative way. We
varied block size from 16 bytes to 4096 bytes and made heap
cache use all available space in the local memory. The block
size is also the minimum data transfer unit between the global
memory and the local memory (can be termed as granularity).
A larger block size provides the functionality of prefetching as
it brings in a few nearby elements together to the local memory.
We normalized the runtime of application with other block
sizes to that with block size equaling to 16 bytes. As shown
in Fig. 5(a), the performance of dijkstra and stringsearch can
be improved by simply increasing the block size. Because
they access data sequentially in nature, a large block size
takes advantage of data prefetching and higher data transfer
bandwidth. On the other hand, other benchmarks can get the
best performance with block size between 256 bytes and 512
bytes, since there is a trade-off between transfer granularity
and data locality. When block size is small, increasing it can
increase the reuse of data. After some time, when increasing
block size, data locality is not increased too much but the
overhead introduced by the larger transfer size increases a lot.

2) Set Associativity: In this experiment, we explored from
direct mapped to 8-way associative heap cache without victim
buffer. The heap region size is changed from the minimum size
to all the available space in the local memory, and the block
size is changed from 16 bytes to 4096 bytes. We normalized
the average runtime of N -way (N=2,4,8) associative manage-
ment to that of direct mapped management. Fig. 5(b) shows
4-way associative heap cache can improve performances of
benchmark DFS, fft, invfft and MST. For benchmark dijkstra
and stringsearch, the performances are even worse with the
higher associativity. The purpose of using a heap region with
a higher associativity is to decrease the miss rates and reduce
the number of DMA transfers, however, a higher associativity
will incur higher computations, such as the computation spent
on looking up the management data structure. If the benefit
brought by high hit ratio beats the computation overhead,
higher associativity is better. Otherwise, higher associativity
will degrade the performance.

3) Victim Buffer: In order to relieve thrashing of heap
objects, we implemented a victim buffer for heap data manage-
ment. In this experiment, we made heap region use all available
space in the local memory, varied the number of blocks in the
victim buffer, and changed the block size from 16 bytes to
4096 bytes. In addition, we manage heap objects in 4-way
associative way, as we found it is the best associativity in
the previous section. Fig. 5(c) shows the average exploration
results. We normalized all results with other number of blocks



(a) Impact of Block Size (in Bytes) (b) Impact of Set Associativity (c) Impact of Victim Buffer (# of Blocks)

Fig. 5. Impact of Heap Cache Parameters

of victim buffer to the result with 0 block. Each bar means a
different number of blocks in the victim buffer, e.g. 0 means
heap cache has no victim buffer and 1 means victim buffer has
one heap cache block. We can observe that most of the bench-
marks have the best performance without victim buffer, except
that benchmark MST has the best performance when victim
buffer can accommodate three heap cache blocks. Victim
buffer is designed for thrashing of heap objects, which is heap
access pattern dependent. When an application does not have
thrashing access pattern, the implementation complexity will
add more overhead. In this sense, the performance degradation
by the extra instructions for victim buffer implementation
outperforms the benefit obtaining from less number DMAs.
One the other side, when an application has lots of thrashing
access pattern, the filter buffer can reduce the number of
conflict misses and improve its performance.

V. CONCLUSION

In this paper, we propose a compilation and runtime system
to manage unlimited size of heap data for limited local memory
multi-core architectures. Compared to previous technique, our
infrastructure is fully automatic, supports multi-level heap
pointers, and has better performance. Experimental results on
several benchmarks demonstrate that we can achieve 43%
better performance on average over previous approach. In
addition, we explored design and parameter space for heap data
structure. We explored different block sizes, set associativities
and victim buffer sizes. Our results indicate that a 4-way
associative heap data structure without victim buffer is the best
overall design.

REFERENCES

[1] K. Bai and A. Shrivastava, “Heap Data Management for Limited Local
Memory (LLM) Multi-core Processors,” in Proc. CODES+ISSS, 2010,
pp. 317–326.

[2] “The SCC Programmer’s Guide,” Tech. Rep.
[3] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,

“Scratchpad Memory: Design Alternative for Cache on-chip Memory
in Embedded Systems,” in Proc. CODES+ISSS, 2002, pp. 73–78.

[4] B. Flachs at el., “The Microarchitecture of the Synergistic Processor for
A Cell Processor,” IEEE Solid-state circuits, vol. 41, no. 1, pp. 63–70,
2006.

[5] T. Hardware, “Raw Performance: SiSoftware Sandra 2010 Pro
(GFLOPS).”

[6] “Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
Datasheet, Volume 1,” in White paper. Intel.

[7] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap Data Allocation
to Scratch-pad memory in Embedded Systems,” J. Embedded Comput.,
vol. 1, no. 4, pp. 521–540, 2005.

[8] R. Mcllroy, P. Dickman, and J. Sventek, “Efficient Dynamic Heap
Allocation of Scratch-pad Memory,” in Proc. ISMM, 2008, pp. 31–40.

[9] F. Poletti, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J. M.
Mendias, “An Integrated Hardware/Software Approach for Run-time
Scratchpad Management,” in Proc. DAC, 2004, pp. 238–243.

[10] S. c. Jung, A. Shrivastava, and K. Bai, “Dynamic Code Mapping for
Limited Local Memory Systems,” in Proc. ASAP, 2010, pp. 13–20.

[11] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri,
“A Post-compiler Approach to Scratchpad Mapping of Code,” in Proc.
CASES, 2004, pp. 259–267.

[12] B. Egger, C. Kim, C. Jang, Y. Nam, J. Lee, and S. L. Min, “A Dynamic
Code Placement Technique for Scratchpad Memory Using Postpass
Optimization,” in Proc. CASES, 2006, pp. 223–233.

[13] A. Janapsatya, A. Ignjatović, and S. Parameswaran, “A Novel Instruc-
tion Scratchpad Memory Optimization Method Based on Concomitance
Metric,” in Proc. ASP-DAC, 2006, pp. 612–617.

[14] M. T. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Ka-
dayif, and A. Parikh, “Dynamic Management of Scratch-Pad Memory
Space,” in Proc. DAC, 2001, pp. 690–695.

[15] N. Nguyen, A. Dominguez, and R. Barua, “Memory Allocation for
Embedded Systems with A Compile-time-unknown Scratch-pad Size,”
in Proc. CASES, 2005, pp. 115–125.

[16] S. Steinke at el., “Reducing Energy Consumption by Dynamic Copying
of Instructions onto On-chip Memory,” in Proc. ISSS, 2002, pp. 213–
218.

[17] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning Program
and Data Objects to Scratchpad for Energy Reduction,” in Proc. DATE,
2002, p. 409.

[18] M. Verma and P. Marwedel, “Overlay Techniques for Scratchpad
Memories in Low Power Embedded Processors,” IEEE VLSI, vol. 14,
no. 8, pp. 802–815, 2006.

[19] M. Verma, L. Wehmeyer, and P. Marwedel, “Cache-Aware Scratchpad
Allocation Algorithm,” in Proc. DATE, 2004, p. 21264.

[20] P. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. Off-chip Memory:
the Data Partitioning Problem in Embedded Processor-based Systems,”
in ACM TODAES, 2000, pp. 682–704.

[21] M. T. Kandemir, J. Ramanujam, and A. N. Choudhary, “Exploiting
Shared Scratch Pad Memory Space in Embedded Multiprocessor Sys-
tems,” in Proc. DAC, 2002, pp. 219–224.

[22] L. Li, L. Gao, and J. Xue, “Memory Coloring: A Compiler Approach
for Scratchpad Memory Management,” in Proceedings of PACT, 2005,
pp. 329–338.

[23] K. Bai, A. Shrivastava, and S. Kudchadker, “Stack Data Management
for Limited Local Memory (LLM) Multi-core Processors,” in Proc.
ASP-DAC, 2011, pp. 231–234.

[24] A. Kannan, A. Shrivastava, A. Pabalkar, and J.-e. Lee, “A Software
Solution for Dynamic Stack Management on Scratch Pad Memory,” in
Proc. ASP-DAC, 2009, pp. 612–617.

[25] M. Mamidipaka and N. Dutt, “On-chip Stack Based Memory Organi-
zation for Low Power Embedded Architectures,” in Proc. DATE, 2003,
pp. 1082–1087.

[26] K. Bai, D. Lu, and A. Shrivastava, “Vector Class on Limited Local
Memory (LLM) Multi-core Processors,” in Proc. CASES, 2011, pp.
215–224.

[27] “GCC Internals”. http://gcc.gnu.org/onlinedocs/gccint/.
[28] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” in Proc. Workload Characterization,
2001, pp. 3–14.

[29] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure
for Computer System Modeling,” Computer, vol. 35, no. 2, pp. 59–67,
Feb. 2002.


