
CMSM: An Efficient and Effective Code
Management for Software Managed Multicores

Ke Bai, Jing Lu, Aviral Shrivastava and Bryce Holton
Compiler Microarchitecture Laboratory

Arizona State University, Tempe, Arizona 85287, USA
Email: {Ke.Bai, Jing Lu, Aviral.Shrivastava, Bryce.Holton}@asu.edu

Abstract—As we scale the number of cores in a multicore
processor, scaling the memory hierarchy is a major challenge.
Software Managed Multicore (SMM) architectures are one of
the promising solutions. In an SMM architecture, there are no
caches, and each core has only a local scratchpad memory. If
all the code and data of the task mapped to a core do not
fit on its local scratchpad memory, then explicit code and data
management is required. In this paper, we solve the problem of
efficiently managing code on an SMM architecture. We extend the
state of the art by: i) correctly calculating the code management
overhead, ii) even in the presence of branches in the task, and
iii) developing a heuristic CMSM (Code Mapping for Software
Managed multicores) that results in efficient code management
execution on the local scratchpad memory. Our experimental
results collected after executing applications from MiBench suite
[1] on the Cell SPEs (Cell is an SMM architecture) [2], demon-
strate that correct management cost calculation and branch
consideration can improve performance by 12%. Our heuristic
CMSM can reduce runtime in more than 80% of the cases, and
by up to 20% on our set of benchmarks.

Keywords—Code, instruction, local memory, scratchpad mem-
ory, SPM, embedded systems, multi-core processor

I. INTRODUCTION

We are in a transition from multicore processors to many-
core processors. While scaling the number of cores is relatively
straightforward, scaling the memory hierarchy is a major
challenge. Most experts believe that fully cache-coherent archi-
tectures will not scale when there are hundreds and thousands
of cores, and therefore architects are looking for alternative
scalable architecture designs. Recently, a 48-core non-coherent
cache architecture named Single-chip Cloud Computer (SCC)
was manufactured by Intel [3]. The latest 6-core DSP from
Texas Instruments, TI 6472 [4] features non-coherency cache
architecture. But caches still consume a large portion of power
and die area [5]. A promising option for an even more power-
efficient and scalable memory hierarchy is to not have caches,
but only scratchpad memories. Scratchpad memories are raw
memories that do not have any tags and lookup logic. As a
result, they consume approximately 30% less area and power
than a direct mapped cache of the same effective capacity [5].
Therefore, such scratchpad based multicore architectures have
the potential to be more power-efficient and scalable than
traditional cache-based architectures.

However, this improvement in power-efficiency comes at
the cost of programmability. Since there is no data manage-

This research was funded by grant from National Science Foundation CCF-0916652.

ment implemented in the hardware in these scratchpad based
multicore architectures, data must be managed by the applica-
tion in software. This means that the data that the application
will require must be brought into the local scratchpad memory
using a Direct Memory Access (DMA) command before it is
used, and can be evicted back to the main memory (also using
the DMA command) after it is used. Due to this explicit need
of data management in software, these processor designs are
termed, Software Managed Multicore (SMM) architectures. A
very good example of SMM memory architecture is the Cell
processor that is incorporated in the Sony Playstation 3. The
Synergistic Processing Elements (SPEs) in the Cell processor
have only scratchpad memories. Its power efficiency is around
5 GFlops per watt [2].

SMM architecture is a truly “distributed memory architec-
ture on-a-chip.” Applications for it are written in the form of
interacting tasks. The tasks are mapped to the cores of the
SMM architecture. Each execution core can only access its
local scratchpad memory, and to access other local memories
or the main memory, explicit DMA instructions are required in
the program. The local memory is shared among code, stack
data, global data and heap data of the task executing on the
core. How to manage the task data on scratchpad memory of
the cores is an important problem that has drawn significant at-
tention in recent years [6]–[14]. While management is needed
for all code and data of the task when they cannot fit in the
local memory, in this paper we will focus on the problem of
code management, since efficient code management can be of
considerable significance to the performance of the system.
The first step in code management is to assign some space
in the local scratchpad memory for managing code. Then we
divide this space into regions, and functions in the program
are mapped to these regions. Functions mapped to the same
region are compiled and linked starting with the same start
address (that of the region). At runtime, only one function out
of the ones that are mapped to the region can be present in
the region. At each function call, it is checked whether the
function being called is present in the region or not. If not,
it is fetched from the main memory using a DMA command
[15]. Therefore, the size of region is equal to the size of the
largest function mapped to the region, and the total code space
required is the sum of the sizes of the regions. Given some
space on the local memory, the code management problem is
to i) divide the code space into regions, and ii) find a mapping
of functions to regions, so that the management overhead is
minimized. We estimate the memory management overhead to
be proportional to the size of code that needs to be transferred
between the local memory and the main memory.978-1-4799-1417-3/13/$31.00 c© 2013 IEEE

Fig. 1: Code mapping problem on scratchpad memory - when
task assigned to the execution core has larger footprint than
the available space, code needs to be mapped between external
main memory and the local scratchpad memory of the core.

Finding the number of regions and mapping the functions
to regions that will minimize instruction transfer, both have
been proven to be intractable [6], [16]. Therefore, several
heuristics have been proposed [6]–[8], [12]. A key component
of code management schemes is a function that given a map-
ping of functions to regions, estimates the overhead of code
management, or more precisely the amount of memory that
will be transferred. This cost function “drives” the technique
to map function into regions, and in a sense, the function
mapping technique can only be as good as the accuracy
of this cost estimation function. Unfortunately, all previous
techniques have estimated this overhead of code management
inaccurately. We identify three limitations in the state-of-the-
art mechanisms to accurately estimate the code management
overhead. The limitations are: i) Assumption that the code
management overhead when two functions are mapped to the
same region is independent of where the other functions are
mapped. This is incorrect, because as we show in this paper,
the overhead depends on which other functions are mapped
to the same region as the two functions. ii) Several cases of
inaccurate estimation, e.g., when a function is called at several
places in the program. iii) Ignoring the effect of branches. Most
previous schemes broadly assumed that both the branch paths
are executed. As a result, the estimation of the number of
times a function is called inside a branch increases instead
of decreasing. This leads to inaccurate code management
overhead estimation – especially when branch probability is
quite skewed (e.g., 90% or 10%). The inaccuracies in the
code management overhead caused due to these limitations,
although do not result in wrong results, they do result in
bad mapping decisions and therefore sub-optimal performance.
We address problems aforementioned and make the following
contributions:

1) Correct code management overhead calculation is pro-
posed. It properly considers all circumstances leading to
instruction transfer, which cannot be handled in previous
works.

2) Our cost calculation considers branches in the program.
We assert the consideration of branch is very important
and inconsideration of branch in cost calculation in pre-
vious works is one of the reasons that leads to inefficient
code mapping.

3) A fast polynomial time heuristic for Code Mapping
on Software Managed multicore processors (named as

Fig. 2: Cost between functions depends on where other func-
tions are mapped, and updating the costs as we map the
functions can lead to a better mapping.

CMSM) is proposed. It takes in graphical code represen-
tation of the program, and then transforms the represen-
tation to cost calculation graph, from which management
cost is calculated and code mapping is ultimately exe-
cuted.

We establish the effectiveness of the proposed cost calcu-
lation and mapping techniques by executing benchmarks from
the MiBench suite [1] on the SPEs of the Cell processor [2],
and comparing with the closest approach [7]. We find that
when we use correct estimation of code management overhead,
even in the previous code management technique, it leads to a
mapping that performs 12% better. On top of that, our CMSM
heuristic can reduce runtime in more than 80% of the cases,
and by up to 20% on our set of benchmarks.

II. BACKGROUND AND MOTIVATION

To run an application with larger code size than what is
available on the local scratchpad memory, typically the code
overlay scheme is leveraged [15]. Usually, the overlay organi-
zation is generated manually by programmers or automatically
by a specialized linker. A good code overlay requires deep
understanding of the program structure, with the consideration
of maximum memory savings and minimum performance
degradation. As in Fig. 1, code overlay organization needs to
determine both the number of regions and the mapping of
functions to regions. Functions mapped to the same region
are located in the same physical address, and must replace
each other during run time (by instruction fetching function

ovly load() before each function call) [15]. Therefore, the
size of a region is the size of the largest function in the region.
The total code space required is equal to the sum of the sizes
of regions. From the performance perspective, it is best to
place each function into a separate region, so that it will not
interfere with any other object, but that may increase the code
space too much. In contrast, mapping all functions into one
region uses the minimum amount of code space, but incurs too
many instruction transfers and therefore runtime overhead. The
task of optimizing code mapping is, to organize the application
functions into regions that will obtain a balance between the
code space used and the data transfers required.

The work [6]–[8], [12] provide heuristics for code mapping
on SMM architectures. However, they are all not efficient
enough, which prevents scratchpad memory becoming a com-
petitive alternate of cache on multicore processors in terms of
performance. The inefficiency is mainly because of inaccurate
or incorrect cost calculation. There are three reasons for their
inaccuracies:
i) No updating of cost calculation: Previous work [6], [8],

[12] didn’t update the cost dynamically. It is incorrect and
can lead to inferior mapping. Fig. 2 (a) shows an example
where function main calls F1, F1 calls F2, and F2 calls F3,
and then they all return. The function nodes also indicate the
sizes of each of the functions. Let us consider a case which
requires us to map all functions into a scratchpad memory
of 5 KB. It is slightly tricky to calculate the cost between
indirect function calls. For example, when compute the cost
between main and F2, if main and F2 are mapped to the same
region, the interference1 between them depends on where F1
is mapped. If F1 is mapped to another different region, then
the interference between main and F2 is just sum of their
sizes, namely, 3 KB + 1 KB = 4 KB. The calculation is as
follows. When F2 is called, 1 KB of function F2 will need
to be brought into the memory. When the calling state returns
to main, 3 KB of the code of main needs to be brought into
the scratchpad. However, if all main, F1 and F2 are mapped
to the same region, then the interference cost between main
and F2 is 0. This is because, when F2 is called, main is
already replaced with F1, and when the program returns to
main, F2 is already replaced. In a sense, there is interference
between main and F1, and between F1 and F2, but there is no
interference between main and F2. Previous approaches [6],
[8], [12] computed the worst case interference cost, i.e., 4 KB
for main - F2, and never updated it, and therefore obtained
inferior mapping. To explain this, Fig. 2 (b) shows a state in
mapping when main, F1 and F2 have already been mapped.
main is alone in region 0, F1 and F2 are together in the region
1. Now is the time to map function F3. Size of F3 is 0.5 KB,
therefore it can be mapped to either region, without violating
the size constraint. The interference cost between region 0 and
F3, i.e., between main and F3 is 3.5 KB. The interference cost
between region 1 and F3 is traditionally computed as the sum
of interferences between the functions in region 1 and F3,
i.e., 2.5 KB between F1 and F3, and 1.5 between F2 and F3,
totalling to 4 KB. Consequently traditional techniques will map
F3 to region 0 with main (shown in Fig. 2 (c)). Clearly there
is a discrepancy in computing the interference cost between
region 1 and function F3. If F2 is also mapped to the same
region, the interference cost between F1 and F3 should be
estimated as 0. Otherwise, the interference cost between region
1 and function F3 are incorrectly (over)estimated. With this
fixed, the interference between region 1 and F3 is just the
interference between F2 and F3, which is just 1.5 KB. As
per this correct interference calculation, F3 should be mapped
to region 1 (shown in Fig. 2 (d)). The required total data
transfer between the main memory and the local memory, in
this case 9.5 = 3 + (2 + 1 + 0.5 + 1 + 2) KB, as compared
to 11.5 = (3 + 0.5 + 3) + (2 + 1 + 2) KB with the previous
mapping, resulting in a 18% savings in data transfers.
ii) Incorrect cost calculation: The mapping schemes in [6]–

[8], [12] are all aimed to reduce the management cost. But
none of them has proposed a correct cost calculation scheme.
There are two problems with their methods. On one hand, none
of their methods is general enough to be applied to situations
in which a function is called in multiple locations. When
their methods are used to calculate the mapping cost between
two functions, information such as whether or not the two

1The interference here means the two functions mapped to the same region will replace
each other during execution time. We use the amount of data transfer to estimate this
interference cost.

Fig. 3: A call graph for which previous cost calculation
methods do not work - The weight on each function node
represents how many times the function is called.

functions have caller-callee relationship, as well as what is the
least common ancestor (LCA) of the two functions need to be
known. However, if a function is called in multiple locations
in the application, it is impossible to define its relationship
with other functions. Let us consider an example as shown in
Fig. 3, the relationship between F1 and F2 is hard to define,
as there are several instances of F1 in the program. Such
situation is quite common in most of the applications, in the
sense that functions such as malloc() and printf() are frequently
called in different locations. Failing to handle those situations
makes their methods inappropriate for most applications. On
the other hand, even for functions that have simple interference
relationship, previous cost calculation methods may still lead
to wrong results. We can see the same program shown in Fig. 3
again, where F3 is called by F2 in a loop, F5 is called by F4
in another loop, and the whole sub-tree rooted by F2 is called
in the third loop. We further assume F3 and F5 were mapped
to the same region and they were the only functions mapped
to the region. Therefore, their interference pattern could be
illustrated in the trace:

F3 . . . F3F5 . . . F5F3 . . . F3F5 . . . F5F3 . . . F3F5 . . . F5

In this circumstance, the cost between them should be 3 ×
(sizeF3 + sizeF5), in which sizeF denotes the code size of
function F. However, using the methods by [6], [7], [12], the
cost between F3 and F5 is 15× (sizeF3+ sizeF5) instead, as
they calculate the interference cost between function Fa and
function Fb as min(countFa

, countFb
) × (sizeFa

+ sizeFb
),

in which countF denotes the execution count of function
F. Alternatively, according to [8], in which the interference
cost between function Fa and function Fb is calculated as
countLCA×(sizeFa+sizeFb

), the cost between F3 and F5 is
10× (sizeF3 + sizeF5). All those methods has overestimated
the code management cost.
iii) No consideration of branch: The mapping schemes in
[6]–[8], [12] didn’t consider the existence of branch in the
program, which leads functions in different branches have the
same degree when considered for mapping. Let us consider a
program that has three functions, F0, F1, and F2, with F1 and
F2 called by F0 in if and else respectively. In addition, they
all have function size S and will be mapped to a code space
of 2S . If F1 will be called by F0 in a probability of 90%, then
it is better to map F0 and F2 into one region and F1 is left in
another separate region. However, without the consideration of
branch, the algorithm might generate a mapping that F0 and
F1 are in a region, F2 is in another region. Even worse, if
F1 is called within a loop in F0, the ignore of branch in the
program could generate a very unsatisfactory mapping.

In this paper, we will propose correct management over-
head estimation for code mapping, as well as an efficient and
effective heuristic to map the code for SMM architectures.

III. RELATED WORK

Scratchpad memory has been well known for a decade in
the embedded area. Since it sheds hardware required for cache
management to enable performance and silicon area advan-
tages over the system cache, all code and data management
must rely on compiler or programmer’s hand inserted code [5].
There are a number of approaches for selecting what to place
into the scratchpad memory and when to place them there.
Steinke et al. [17] view the instruction placement problem
in terms of minimizing memory accesses, and evaluate the
structure of the program in the granularity of basic blocks
and functions to formulate an ILP problem. Udayakumaran et
al. [18] present an algorithm which looks at timestamps in
code sections to determine temporal locality, The work [19],
[20] present algorithms which require trace data. Egger et al.
[21] implements a paged SPM management and prefetching
scheme. These schemes require profiling information which is
impractical as program execution varies widely on different
input data when there are branches. Besides, these techniques
cannot be directly applied to Software Managed Multicore
(SMM) architecture. This is because of the difference in the
way scratchpad memory has been traditionally used, and the
way it is used in SMM architectures. In embedded systems,
e.g., ARM processors, the scratchpad memory is present in ad-
dition to the regular cache hierarchy of the processor. Programs
can be executed correctly without using scratchpad memory,
but scratchpad memory can be used to optimize performance
and power efficiency. On the contrary, the scratchpad memory
is the only memory hierarchy in SMM architecture and is
therefore essential, rather than optional. All code and data must
go through it. As a result, while the problem of using scratch-
pad memory in embedded systems is that of optimization, the
problem of using scratchpad memory in SMM architectures is
to enable the execution of applications.

We have proposed several schemes to manage stack data
and heap data for SMM architectures [9]–[11], [13], [14]. To
the best of our knowledge, work [6]–[8], [12] are similar to our
effort for code and [7] is the most similar one. Two mapping
algorithms were proposed in [7]. One is function mapping by
updating and merging (FMUM) and the other one is function
mapping by updating and partitioning (FMUP). FMUM begins
with a mapping in which each function is placed in a separate
region. It repeatedly selects and merges a pair of regions with
the minimal merge cost among all pairs of regions until all
functions can fit in the given scratchpad memory size. In
contrast, FMUP starts with a mapping where all functions
are placed in only one memory region. It repeatedly selects
the function which maximally decreases the cost and places
it to another region until the size of the total amount of
instruction space is less than the given memory size. In this
paper, we address the problems discussed in Section II. In the
next section, we formally define the code mapping problem.
In Section V, we present a correct cost calculation for code
management on SMM architectures, and then our efficient
heuristic CMSM is presented in Section VI.

TABLE I: Symbols used for problem definition
Variable Description
Sp Size of local scratchpad memory;
F A set of functions that are in the program;
FID A set of function IDs;
N Number of function IDs in FID;
M(fid, f) An associate set contains all association

between fid and f , where fid ∈ FID, f ∈ F ;
Sfid A set contains function sizes of function id

fid, where fid ∈ FID;
R A set of function regions;
Sf A set contains code sizes of function f in F .

* Please note that the mapping relation between a function to function IDs is
“one-to-many”.

IV. PROBLEM DEFINITION

The symbols used in the problem definition are shown in
Table I.
Decision variables:

• x(f, r): {0,1}, indicates whether function f is mapped to
region r.

• Sr: integer, indicates the size of region r, where r ∈ R.

Derived variables:

• y(fid, r): {0,1}, indicates whether function id fid is
mapped to region r, where fid ∈FID and r ∈ R.

• num(ida, idb, r): integer, indicates the number of ids
between ida and idb that are mapped to region r, where
ida, idb ∈FID and r ∈ R.

• switch(ida, idb): {0,1}, indicates whether idb causes
function context switch during the execution of program,
where ida, idb ∈FID and ida<idb.

Constraints:

1) Region Size: The region must be large enough to accom-
modate all functions mapped to it. Therefore, this region
must be larger than any function mapped to it.

∀r ∈ R, f ∈ F : Sr ≥ x(f, r) ∗ sf
2) Function Mapping Unicity: A function f can and only

can be mapped to one region.

∀f ∈ F :
∑
r∈R

x(f, r) = 1

3) Scratchpad Memory Size: The total size of all regions
must not exceed the scratchpad memory size predefined.∑

r∈R
Sr ≤ Sp

4) Mapping Association: When function f is mapped to a
region r, all function id fid corresponds to f must be
also mapped to region r.

∀(fid, f) ∈M(fid, f), fid ∈ FID, f ∈ F, r ∈ R :

y(fid, r) = x(f, r)

5) Number of Functions: Number of functions between two
ids needs to be updated dynamically.

num(ida, idb) =
∑
r∈R

∑
ida<id<idb

x(id, r) ∗ y(ida, r) ∗ y(idb, r)

Fig. 4: GCCFG and an illustration of cost calculation in Algorithm 1

6) Determination of switch:
a) If there are many functions between to-be-determined-

two functions, there are no context switch between
these two functions.

(1− switch(ida, idb)) ∗N ≥ num(ida, idb)

b) On the other hand, when there are no other func-
tions between to-be-determined-two functions, context
switch must happen between them.

switch(ida, idb) ≥ 1− num(ida, idb)

Objective Function:

• We choose the number of instruction transfers from the
main memory to the local scratchpad memory as the cost
metric. When there is a context switch from function ida
to function idb, we need to get all instructions of function
idb through DMAs. Therefore, our objective must be to
minimize the total amount of instruction transfer of all
regions in the local scratchpad memory, where sidb

is the
code size of the function idb.

minimize
∑

ida,idb∈FID

switch(ida, idb) ∗ sidb

V. COST CALCULATION

A. Graphical code representation

In order to calculate the management cost correctly and
map code efficiently, we need to deeply understand the struc-
ture of the input program and represent the flow information
and control information in a proper form. We build this
information into an enhanced Control Flow Graph (CFG)
known as Global Call Control Flow Graph (GCCFG) presented
by Pabalkar et al. [6].

Definition 1: (Global Call Control Flow Graph). A global
call control flow graph (V , E) is an ordered acyclic directed

graph, where V = VF

⋃
VL

⋃
VC . Each node vf ∈ VF with

a weight wf on it represents a function or F-node, vl ∈ VL

denotes a loop or L-node, vc ∈ VC represents a conditional
or C-node. wf is the number of times function f is invoked
in the program. An edge eij (eij ∈ E) shows a directed edge
between F-nodes, L-nodes and C-nodes.

Property. If vi and vj are functions, then the edge rep-
resents a function call. If vj is an L-node or a C-node then
it represents control flow. If vi is a C-node, then the edge
represents one possible path of execution. If vi is a loop, then
the edge represents what is being executed in the body of
the loop. If vj is a loop and its ancestor is a loop then the
edge represents a nested loop execution. The edges are ordered,
edges to the left execute before edges to the right, except in
the case of condition nodes. Edges leaving condition nodes
can execute their true or false children, where all true children
are ordered and all false children are ordered.

As an example, Fig. 4 (a) shows the GCCFG of the
program in Fig. 1 (a). We ignore direct recursive function calls
F5 in the graph. Since we are concerned with cost between
different functions, the effect of a direct recursive call is that
the code necessary to run the called function is already in
memory, resulting in no instruction transfers. The support for
the construction of GCCFG with mutual recursive functions
could be a future work. In addition, we conservatively expand
indirect function calls invoked through function pointers in
much the same way as they were called with equal probability
outside of any conditional node.

B. Cost calculation graph

Definition 2: (Cost Calculation Graph). A cost calculation
graph (V , E) is a cyclic directed graph, where E = EB

⋃
EN .

Each node vf ∈ V with a taken probability pf on it represents
a function node. A backward edge eij (eij ∈ EB) shows a loop
in the program, a normal edge eij (eij ∈ EN) shows the order
the function is executed.

Algorithm 1 Algorithm cost (Ra, Rb, GCCFG)
1: Step 1: Transform GCCFG to cost calculation graph by modifying Depth First Search (DFS) algorithm;
2: Step 2: Remove all other functions from the graph and just keep the functions in the two regions Ra and Rb;
3: Step 3: If the first function and the last function in a loop are identical, then the last function in the loop must be moved out of the loop and put right close to the function after

the loop;
4: Step 4: Eliminate identical adjoining functions (fb after fa, where there are the same function) in the graph. If a function is the only function in a loop, then remove the loop

and its corresponding loop count.
5: If fa and fb are separated by a loop, then keep the one that is inside the loop;
6: If fa is before a branch and fb is within a branch, then the first function node in all branches must be checked to see whether they are the same function as fa. If not, no

removal here; otherwise, we can remove one.
7: Step 5: Calculate the cost totalCost.
8: Rule: cost (F) = 1 × branch probability (F), where F is a function in the program. (The function that is not in the branch has probability 1).
9: For all functions in a loop, we apply the Rule to compute the total cost in the loop. However, the total cost must be multiplied by its loop count, and then be added to

totalCost.
10: return totalCost;

Cost calculation graph is an estimation of execution trace
of a program. The leftmost graph in the Fig. 4 (b) shows the
cost calculation graph of GCCFG in Fig. 4 (a). As GCCFG
is ordered, the cost calculation graph could be constructed by
modifying Depth First Search (DFS) algorithm, where function
nodes are put in the same order as the function nodes in
GCCFG are touched in DFS. When a loop node is found,
a backward edge will be added after the traversal of the whole
sub-tree. When a conditional node is met, we would attach
all nodes connected to conditional node to its parent node,
and function nodes in each diverging path will keep the same
order as they are in the order of DFS traversal.

C. Cost calculation algorithm

Algorithm 1 outlines a simplified version of the cost
calculation algorithm and Fig. 4 (b) shows an illustration of our
algorithm. In this example, we are trying to evaluate the cost
of mapping region {main, F1} and region {F2} in one region.
We firstly transform GCCFG to cost calculation graph at step
1, and then remove all irrelevant functions in the program at
step 2. The step 3 moves the last function in the loop out of
the loop if it is the same as the first function in the loop. At
step 4, we remove all redundant functions. When there is only
one function in a loop, we can remove the loop information
to further eliminate the redundancy. Finally, we calculate the
mapping cost at step 5, where we consider the impact of branch
probability and the existence of loops.

Proof of correctness. Since GCCFG is an ordered acyclic
directed graph, the transformation at step 1 approximately
emulates the execution trace of function calls in the program.
As we only calculate the cost of mapping functions from
two regions into one region, the removal of other unrelated
functions at step 2 will not change the correctness of our final
cost calculation. Step 3 will not affect the correctness of the
calculation, since there is no context switch in the loop if the
first and the last function in the loop are the same. However,
one copy of node must be put in the graph, since there might
exist a context switch right after the loop. When two adjoining
functions in the graph are identical, we assert there is no
context switch in the target region. Therefore, we can remove
redundant copies at step 4. Even more, if the function is the
only function in a loop, the loop information must be removed
as well, as the function itself will not result in any instruction
transfer.

Complexity. At the step 1, we use modified DFS algorithm
to generate cost calculation graph, and therefore the timing

Algorithm 2 Algorithm CMSM (GCCFG, S)
1: SPMregions {set of N regions in the scratchpad memory} . N is the number of

functions in the program
2: Rdest ← 0, Rsrc ← 0;
3: while SPMSize() > S do
4: FindMinBalancedMerge(Rdest, Rsrc, GCCFG);
5: MergeRegions(Rdest, Rsrc);
6: SPMregions.erase(Rsrc);
7: end while

Algorithm 3 FindMinBalancedMerge (&Rdest, &Rsrc, GCCFG)
1: minMergeCost ← DBL MAX, tmpCost ← 0;
2: for all combination of regions R1, R2 ∈ SPMregions do
3: size1 ← RegionSize(R1), size2 ← RegionSize(R2);
4: max ← max(size1, size2), min ← min(size1, size2);
5: tmpCost = cost(R1, R2, GCCFG) * max−min

(max+min)2
;

6: if tmpCost < minMergeCost then
7: minMergeCost = tmpCost;
8: Rdest = R1;
9: Rsrc = R2;

10: end if
11: end for

complexity is O(|E|). We traverse the cost graph from step 2
to step 4. Therefore, it adds O(|Vf |) to the time. Consequently,
the timing complexity of cost calculation algorithm is O(|E|)
(≈ O(|V |) in the cost calculation graph).

VI. CODE MAPPING HEURISTIC: CMSM

Algorithm 2 outlines our CMSM heuristic. It starts with
a mapping, in which each function is mapped to a separate
region (line 1). Now all combinations of two regions are
tried to be merged until the total space meets memory con-
straints (while loop, lines 3-7). To do this, we firstly find two
“balanced” regions with minimal merge cost through function
FindMinBalancedMerge() at line 4. We then merge two regions
and update the region information in the set SPMregions
(line 5-6). Function FindMinBalancedMerge() is described in
Algorithm 3. To do this, we choose a region pair (R1, R2)
(Algorithm 3, line 2-11), and calculate its merge cost at line 5.
Here, we utilize the cost function from Algorithm 1. Besides,
there is a balance factor max−min

(max+min)2 . It is inclined to place
the functions having close object sizes into the same region.
It is important, since we can compress the total code space
in the local scratchpad memory and use less memory. This
remaining space could result in more number of regions as long
as there are functions that could be accommodated to it. Even
if no more regions would be generated, it is still beneficial to
use less space to achieve competitive performance. As stated
before, the local scratchpad memory is shared among global

data, stack data, heap data and instructions of the managed
program, less space consumed by instructions indicates more
space for other data that could eventually results in better
performance.

Complexity. The while loop at line 3 in Algorithm 2 merges
two regions at a time. Since in the worst case, all regions might
have to be merged into one, this loop can execute |Vf | times.
Inside this, the for loop (lines 2-11 in Algorithm 3) runs for
each pair of regions. This adds O(|Vf |2) complexity to the
time. Inside the loop, there is a cost calculation which has
complexity O(|V |). Thus the worst case timing complexity of
CMSM is O(|Vf |4).

VII. EXTENSION TO CMSM: STATIC
WEIGHT ASSIGNMENT

In previous section, we presented our greedy algorithm
for code management on SMM architectures. However, in
order to fully automate the code mapping process, we describe
our compilation time scheme for estimating the number of
function calls on each function node. The basic blocks of
the managed application are first scanned for the presence of
loops (back edges in a dominator tree), conditional statements
(fork and join points) and function calls (branch and link
instructions). After capturing these information, we assign the
weights on the functions by traversing GCCFG in a top-down
fashion. Initially, they are assigned to 1. When a loop node is
encountered, the weight on all its descendant function nodes
equals the weight of loop node’s nearest ascendant function
node in the path multiplying a fixed constant, loop factor Q.
This ensures that a function which is called inside a deeply
nested loop will receive a greater weight than other functions.
When a conditional node is encountered, the weight on each
descendant function node equals to the weight of conditional
node’s nearest parent function node multiplying the branch
probability of each edge diverging from the conditional node.
We adopted a traditional scheme presented by [22] to predict
the branch probability. We found the impact of Q is negligible
as long as it is larger than 1. As a result, in our scheme, we
choose Q = 10. The previous Fig. 4 (a) is the resulted GCCFG
of the example code with our static weight assignment scheme.

VIII. EMPIRICAL EVIDENCE

A. Experimental Setup

We use IBM Cell BE [2] as our hardware platform. It
is a multicore processor, and gives us accesses to 6 of the
8 Synergistic Processing Elements (SPEs). In addition, this

TABLE II: Benchmarks, their minimum sizes of code space,
and maximum sizes of code space.

Benchmark functions min code (B) max code (B)
Adpcm decoding 13 1552 6864
Adpcm encoding 13 1568 6880
BasicMath 20 4272 12128
Dijkstra 26 2496 9216
FFT 27 2496 12776
FFT inverse 27 2496 12776
String Search 17 632 4708
Susan Edges 24 19356 37428
Susan Smoothing 24 19356 37428

architecture has a main memory on main core, and only a
scratchpad memory on each execution core, or SPE. Scratch-
pad memory is small, and therefore the program needs to be
managed in software when its code is larger than memory
available. The benchmarks used for experimentation are from
Mibench suite [1] and presented in Table II. All those infor-
mation is profiled by compiling programs for SPE. functions
is the total number of functions in the program, including
library functions tailored for SPE. min code is the smallest
possible mapping size of code space, defined by the size of
the largest function in the application. max code is the total size
of the program. We utilize main core and only 1 SPE available
in the IBM Cell BE in most of our experiments, except the
one designed for demonstrating scalability of our heuristic in
Section VIII-F.

B. Overall performance comparison

While the results are scalable for all benchmarks, Fig. 5
shows the execution time of the binary compiled using each
heuristic for four representative applications. The X-axis shows
a wide range from min code to max code of each program,
with the step size 256 bytes. As observed from the figure,
when the code space is very tight, all heuristics achieve the
same mapping, i.e., mapping all the functions in one region.
However, as we start relaxing the code size constraint, CMSM
typically performs better than FMUM and FMUP. There are
two main reasons. First, our CMSM is inclined to place two
functions with small merge cost and similar code size in one
region at each step of merging. It is achieved by using a
“balance” factor described in our algorithm. The benefit of
doing so is to increase the number of regions in the code space.
We expect mapping solutions with more regions to give lower
overhead costs, as only functions mapped to the same region
will swap each other during run time. Second, our CMSM
considers the effect of branches in the applications and utilizes
a correct management cost calculation scheme. Their impact is
further evaluated in Section VIII-C. The reverse effect is also
visible. When the code size constraint is extremely relaxed,
e.g., larger than 70% of max code present in Table II, all three
algorithms again achieve very similar code mapping. This is
because there are quite few functions mapped to one region
when the code space is sufficient enough. The small differences
in code mapping generate negligible effect on performance.
Note that code mappings created by the CMSM do not
always outperform the other two heuristics. For example, when
memory available for instructions of benchmark “dijkstra” is
3520 bytes in Fig. 5b, CMSM is worse than FMUP. This
is because FMUP has to do very few steps, while CMSM
needs to do a lot of merges. The more steps a heuristic has
to take, the errors in each step accumulate, and eventually a
worse mapping might be generated. Although our heuristic
does not consistently gives good results, it gives better results
most of the times. We tested the three heuristics for all code
size constraints from minimum to maximum. On average over
all benchmarks, CMSM gives a better result than other two
algorithms 89% of time. Another important observation from
Fig. 5 is that, applications are tend to have less execution
time when their code space become larger. A large code space
usually leads to more number of regions in it, and therefore
less functions overlap each other in regions. This explains the
trade-off between the performance and the memory available

(a) (b)

(c) (d)

Fig. 5: Performance comparison against FMUM and FMUP

Fig. 6: Impact of accurate cost calculation on FMUM and
FMUP

for instructions.

C. Importance of accurate cost calculation

In this experiment, we conducted another set of experi-
ments that evaluates the impact of accurate cost estimation
on code mapping heuristics. We change the memory size
from 20% of the maximum size to 70% of the maximum
size for each benchmark and plot the average results in
Fig. 6. y-axis is the normalized execution time, where the
runtime of application with FMUM accurate is normalized
to its performance with FMUM and the runtime of application
with FMUP accurate is normalized to its performance with
FMUP, respectively. FMUM accurate and FMUP accurate
use previous heuristics [7], but with our correct management
overhead calculation instead of theirs. x-axis presents two
categories for all our tested programs. Applications in category
I have simple structure and very few branches, and applications
in category II are the programs that contain complicated call

patterns and many branches. As shown in Fig. 6, programs
from the category II benefit from accurate cost calculation.
Their performance are improved by 12% when managed with
accurate management cost estimation method. This benefit
comes by considering branch probabilities as weights during
the course of management overhead calculation. We believe
our improvement is very important, as most large programs do
have intricate call patterns and lack of considering branches in
the program will lead to inferior function mapping for code
management.

D. Compile time comparison

Including branch probabilities and correctly calculating
the management overhead complicate the compilation. In this
section, we evaluate the compilation time of generating linker
script by FMUM, FMUP and CMSM heuristics respectively.
We found that, even with an increase for our algorithm (less
than 5% on average), the compilation time for the set of bench-
marks are always less than a minute. This is definitely tolerable
for several embedded applications which are compiled once,
distributed as binaries, and executed many times. This profile
closely fits the kinds of applications that are intended for
embedded processors, e.g., multimedia and office applications.

E. Accuracy of weight assignment

We examined the goodness of our static weight assign-
ment on function nodes of GCCFGs of nine applications.
We compared the execution time of each benchmark using
static assignment with its execution time using profile-based
assignment. Averagely, we found both schemes achieve sim-
ilar performance for the set of benchmarks. This implies
that we can eliminate the compile time overhead to obtain

Fig. 7: Scalability of CMSM on multicore processors

profiling information through the loop based function weight
assignment. It also makes the code management technique
more comprehensive, since profiling large applications is time-
consuming and intimidating.

F. Scalability

Fig. 7 shows the results we examined the scalability of our
CMSM heuristic. We normalized the execution time of each
benchmark with number of SPEs to its execution time with
only one SPE, and show them on y-axis. In this experiment,
we executed the identical application on different number of
cores. According to the graph, the runtime difference with
the increased number of SPEs is negligible even in such
aggressive configuration. In this configuration, DMA transfer
occur almost at the same time when instructions need to be
moved between the main memory and the local memory. This
will make the Elemental Interconnect Bus (EIB) saturated.
Benchmark BasicMath increases most steeply, as there are
many instruction transfers in the program, which makes each
SPE have more execution time.

IX. SUMMARY

Software Managed Multicore (SMM) architectures are one
of promising solutions to the problem of scaling the memory
hierarchy. However, since scratchpad memory cannot always
accommodate the whole task mapped to it, certain schemes are
required to mange code, global data, stack data and heap data
of the program to enable its execution. This paper focuses
on managing code between the main memory and the local
memory, since an efficient and effective code management
scheme is of utmost importance to the overall performance
of the system. In this paper, we formally define the problem
of mapping code for SMM architectures at the granularity of
function object. Besides, we propose a correct cost calculation
for code mapping, as well as a heuristic approach named
CMSM for the same problem. Our experimental results show
that CMSM generates code mapping which leads to significant
performance improvement compared to previous work.

REFERENCES

[1] M. R. Guthaus et al., “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” in Proc. of Workload Characterization,
2001, pp. 3–14.

[2] B. Flachs et al., “The Microarchitecture of the Synergistic Processor for
A Cell Processor,” IEEE Solid-state circuits, vol. 41, no. 1, pp. 63–70,
2006.

[3] “The SCC Programmer’s Guide,” Tech. Rep.
[4] L. Truong, “Low Power Consumption and a Competitive Price Tag

Make the six-core TMS320C6472 Ideal for High-performance Appli-
cations,” Texas Instruments, Tech. Rep., 2009.

[5] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad Memory: Design Alternative for Cache on-chip Memory
in Embedded Systems,” in Proc. of CODES+ISSS, 2002, pp. 73–78.

[6] A. Pabalkar, A. Shrivastava, A. Kannan, and J. Lee, “SDRM: Simulta-
neous Determination of Regions and Function-to-Region Mapping for
Scratchpad Memories,” in Proc. of HPC, 2008, pp. 569–582.

[7] S. C. Jung, A. Shrivastava, and K. Bai, “Dynamic Code Mapping for
Limited Local Memory Systems,” in Proc. of ASAP, 2010, pp. 13–20.

[8] M. A. Baker, A. Panda, N. Ghadge, A. Kadne, and K. S. Chatha,
“A Performance Model and Code Overlay Generator for Scratchpad
Enhanced Embedded Processors,” in Proc. of CODES+ISSS, 2010, pp.
287–296.

[9] K. Bai and A. Shrivastava, “Heap Data Management for Limited Local
Memory (LLM) Multi-core Processors,” in Proc. of CODES+ISSS,
2010, pp. 317–326.

[10] K. Bai, D. Lu, and A. Shrivastava, “Vector Class on Limited Local
Memory (LLM) Multi-core Processors,” in Proc. of CASES, 2011, pp.
215–224.

[11] K. Bai, A. Shrivastava, and S. Kudchadker, “Stack Data Management
for Limited Local Memory (LLM) Multi-core Processors,” in Proc. of
ASAP, 2011, pp. 231–234.

[12] C. Jang, J. Lee, B. Egger, and S. Ryu, “Automatic Code Overlay
Generation and Partially Redundant Code Fetch Elimination,” ACM
Trans. Archit. Code Optim., vol. 9, no. 2, pp. 10:1–10:32, Jun. 2012.

[13] K. Bai and A. Shrivastava, “Automatic and Efficient Heap Data Man-
agement for Limited Local Memory Multicore Architectures,” in Proc.
of DATE, 2013, pp. 593–598.

[14] J. Lu, K. Bai, and A. Shrivastava, “SSDM: Smart Stack Data Man-
agement for Software Managed Multicores (SMMs),” in Proc. of DAC,
2013, pp. 149–156.

[15] “Programmer’s Guide: Software Development Kit for Multicore Accel-
eration Version 3.1,” Tech. Rep.

[16] M. Verma and P. Marwedel, “Overlay Techniques for Scratchpad
Memories in Low Power Embedded Processors,” IEEE VLSI, vol. 14,
no. 8, pp. 802–815, 2006.

[17] S. Steinke et al., “Reducing Energy Consumption by Dynamic Copying
of Instructions onto On-chip Memory,” in Proc. of ISSS, 2002, pp. 213–
218.

[18] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic Allocation
for Scratch-pad memory Using Compile-time Decisions,” Trans. on
Embedded Computing Sys., vol. 5, no. 2, pp. 472–511, 2006.

[19] A. Janapsatya, A. Ignjatović, and S. Parameswaran, “A Novel Instruc-
tion Scratchpad Memory Optimization Method Based on Concomitance
Metric,” in Proc. of ASP-DAC, 2006, pp. 612–617.

[20] F. Angiolini et al., “A Post-compiler Approach to Scratchpad Mapping
of Code,” in Proc. of CASES, 2004, pp. 259–267.

[21] B. Egger, J. Lee, and H. Shin, “Scratchpad Memory Management
for Portable Systems with A Memory Management Unit,” in Proc. of
EMSOFT, 2006, pp. 321–330.

[22] J. E. Smith, “A Study of Branch Prediction Strategies,” in Proc. of
ISCA, 1981, pp. 135–148.

