
Vector Class on Limited Local Memory (LLM) Multi-core
Processors∗

Ke Bai, Di Lu, Aviral Shrivastava
Compiler Microarchitecture Lab

Arizona State University
Tempe, AZ 85281, USA

{Ke.Bai, dilu3, Aviral.Shrivastava}@asu.edu

ABSTRACT
Limited Local Memory (LLM) multi-core architecture is a
promising solution for scalable memory hierarchy. LLM ar-
chitecture, e.g., IBM Cell/B.E. is a purely distributed mem-
ory architecture in which each core can directly access only
its small local memory, and that is why it is extremely power-
efficient. Vector is a popular container class in the C++
Standard Template Library (STL), which provides the func-
tionality similar to a dynamic array. Due to the small non-
virtualized memory in the LLM architecture, vector library
implementation cannot be used as it is. In this paper, we
propose and implement a scheme to manage vector class in
the local memory present in each core of LLM multi-core ar-
chitecture. Our scalable solution can transparently maintain
vector data between the shared global memory and the lo-
cal memories. In addition, different data transfer granulari-
ties are provided by our vector class to achieve better perfor-
mance. We also propose a mechanism to ensure the validity
of pointers-to-elements when the vector elements are moved
into the global memory. Experimental result shows that our
vector class can improve the programmability of vector class
significantly while the overhead can be contained within 7%.

Categories and Subject Descriptors
D.3.m [Software]: Miscellaneous; D.1.5 [Software]: Object-
oriented Programming

General Terms
Algorithms, Design, Experimentation, Performance.

Keywords
Vector, local memory, scratch pad memory, embedded sys-
tem, multi-core processor, IBM Cell, PS3, MPI

∗This research was partially funded by grants from National
Science Foundation CCF-0916652, IIP-0856090, NSF I/U-
CRC for Embedded Systems, Microsoft Research, SFAz,
Raytheon and Stardust Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0713-0/11/10 ...$10.00.

1. INTRODUCTION
As we transition from single core to many cores, main-

taining the illusion of a single unified memory in multi-core
architecture becomes challenging. There are two main rea-
sons. First is that cache coherency protocols do not scale
well to hundreds of cores [7], and second is, that even if pos-
sible, the overhead of automatically managing memory like
caches is becoming prohibitive in terms of power consump-
tion. Even in single-core processors, caches can consume
more than half of the processor power [7], and are expected
to consume much larger fraction in many-core systems.

Limited Local Memory (LLM) architecture is a scalable
memory architecture, in which each core has a small local
memory. Each core can access only its limited local memory.
Shown in Figure 1, the IBM Cell B.E. is a popular example
of the LLM architecture. It contains one main core, Power
Processing Element (PPE) and 8 Synergistic Processing El-
ements (SPEs). Each SPE has 256 KB of memory [12]. If
all the code and data of that task that is mapped to the SPE
fit in the local memory of the SPE, then very power-efficient
execution is achieved. In fact, the peak power-efficiency of
the IBM Cell processor is 5.1 Giga operations per second per
watt [17]. Contrast this with the power-efficiency of tradi-
tional shared memory multi-cores, e.g., the Intel Core2 Quad
is only 0.35 Giga operations per second per watt [17]. How-
ever, if the code and data of the application do not fit into
the local memory, then the global memory must be leveraged
to contain them through explicit DMA calls. This explicit
data management is a challenge in LLM architectures.

Standard Template Library (STL) is a popular and generic
programming tool and is included in C++ standard library.
It provides a set of container classes, which are data struc-
tures whose instances are collections of other objects. Vector
is a container class which holds data as a dynamic array. As
it is dynamic, vector uses a variable size of memory which
is proportional to the amount of data it contains. Unfor-
tunately, using STL in LLM architectures is difficult. This
is because STL library is not aware of the size of the local
memory. When using vector on Cell SPE, vector class works
fine with a small amount of data. However, when more data
is pushed in the vector, it will throw out an error “terminate
called after throwing an instance of ‘std::bad alloc’ ”. This
happens when the STL wants to allocate space for more
data, but there is no more space in the local memory. To
support vector class in a LLM architecture, the vector data
must be managed between the local and global memory.

Many works in parallel and multi-thread programming
have investigated supporting parallel STL for homogeneous

Figure 1: The IBM Cell B.E. is an example of LLM
architecture. It has 8 Synergistic Processing Ele-
ments (SPE) which can only access its local memory
while the Power Processing Element can access the
global memory through coherent cache. The data
transfers between local memories and the global
memory are achieved by explicit DMA calls.

multi-core systems [4, 8, 11, 14, 15, 20]. However, their ob-
jective is to design STL containers in which the elements
can be accessed by different cores simultaneously. None of
the works has considered limited local memory. This is be-
cause these solutions have been developed for shared mem-
ory multi-core architectures, in which through virtualiza-
tion, each core can access a large amount of memory, but
in an LLM multi-core system, the size of local memory is
limited (because it is not virtualized).

In this paper, we propose a scheme to implement vector
class on the cores of LLM architectures. Our “completely
in software” technique manages arbitrary sized vector data
on the limited local memory of the cores. This is done by
keeping most of the data in the global memory, and using
the local memory as a buffer to the vector data (like a soft-
ware cache). We preserve the syntax and semantics of the
vector API and iterators. A challenge that arises in any
data management scheme is that when a data is moved to
the global memory, pointers pointing to the data become
wrong. We propose a scheme with some functions to resolve
these pointers correctly. Some of our observations from the
implementation are as follows: i) Performance improves as
we increase the buffer size used by the vector on the local
memory. ii) For our set of benchmarks, a block size between
16 and 64 elements seems optimal. iii) Higher associativity
may result in degradation in performance. This is because
more time is spent on searching through the address tag list.
iv) Even when more cores are managing vectors in the core,
the main core is not overwhelmed by memory requests. Fi-
nally this improvement in programmability and automatic
management can be provided in less than 7% performance
overhead.

2. STL VECTOR ON THE CELL SPE
The STL vector class is a container class which can con-

tain a collection of objects. Vector class can perform array-
like operations and access elements randomly. The memory
allocation is done automatically and transparent to users.

main() {
pthread create(...spe context run(speID)...);
}

(a) PPE code

main() {
vector<int> vec1;
vector<long> vec2;
for(i = 0 ; i < N ; i++)

vec1.push back(i);
}

(b) SPE code

Figure 2: Outline of a threaded program on the Cell
processor: (1) PPE creates threads on each SPE,
and STL vector class is used in the SPE program.
(2) In this example, the SPE program works fine
if N is small. But, if N is larger or equal to 8192
integers, the SPE program will crash.

Each time when the memory of vector is used up, vector
will reallocates a double size memory. The same methodol-
ogy can be applied to other container class as well. Rather
than container class, Standard Template Library (STL) pro-
vides a set of programming interface for generic program-
ming. It mainly includes three parts: algorithms, iterator,
and container. Algorithm provides programming interfaces
for searching and sorting algorithm. Iterator is a class that
allows users to traverse the elements of a container, which is
an interface between containers and algorithms. Container
classes use template and their collections can be any data
types. vector class is one of the container classes. It is effi-
cient in inserting and removing elements in the back of the
vector, and retrieving objects.

The IBM Cell Broadband Engine [12] is a multi-core archi-
tecture with limited local memory. As shown in Figure 1, in
Cell processor, only Power Processing Element (PPE) mem-
ory can directly access the global memory. Each Synergistic
Processing Elements (SPE) can only access its local mem-
ory. Operating System (OS) run on PPE, but SPEs do not
have any OS. Data communication between the global mem-
ory and SPE local memories need to be explicitly specified
in the program code as DMA calls.

The local memory of SPE has only 256 KB and is shared
by the compiled code, global data, stack data, and heap
data. The vector data belongs to heap data and grows as
the capacity of vector instances grows. Too large size of heap
data will crash the program. There are two main reasons.
First, since heap data grows towards stack data and there-
fore they may overwrite each other. Second, if the heap data
itself is larger than 256 KB, memory overflow will happen.
As shown in Figure 2, the SPE thread in Figure 2 (b) is ini-
tiated from PPE thread in Figure 2 (a). For a small N , the
program will execute fine, but large values of N will cause
failures, i.e. program will end with error “terminate called
after throwing an instance of ‘std::bad alloc’ ”.

3. CHALLENGES OF STL VECTOR FOR
CELL SPE

The current STL on the Cell processor is from SGI [3],
which supports all the functionalities as it is for single-core
processor. When the code and all data of the program can

Figure 3: (1) No matter what scheme is imple-
mented, older data need to be evicted to the global
memory to make space for new data when the lo-
cal memory is full. (2) The pointer becomes invalid
when the data pointed by it has been evicted.

fit in the local memory of SPE, the current STL can work
correctly and efficiently. Since the local memory is small,
programmers need to be aware of the memory usage in the
local memory every time when more vector data is added.
When the total size of code and data is larger than 256 KB,
they must be manged between the global memory and the
local memories [5,6,16]. The current STL library has no such
functionality, and then the burden of managing the data
explicitly is transferred to programmers. What is needed is a
scheme that can efficiently and intuitively manage the vector
data in the local memory of Limited Local Memory (LLM)
multi-core architectures. However, two main challenges are
found when implementing the new vector class to support
unlimited vector data on the local memory of SPE.

• Management on Global and Local Memory: The
first challenge is where to get the space in the global
memory to allocate the evicted vector data from the lo-
cal memory of SPE. The SPE cannot directly allocates
space in the global memory and therefore it requires
the thread on the PPE to allocate space for itself. As a
result, some way of synchronization must be proposed
to achieve this objective. Secondly, although DMA is
an efficient way of data transfer, it still has a longer
latency compared to the time spent on arithmetic op-
erations. Therefore, when data transfers happens, we
must try to minimize the total DMA size. The last but
not the least challenge is, when the vector data needs
to be evicted to the global memory, what data should
be chosen and what is the best granularity.

• Pointer Problem: Any scheme for managing the vec-
tor data in the local memory will have problems when
the corresponding data pointed by a pointer have been
moved to the global memory. Therefore, the data re-
sides in the global memory and this pointer becomes
invalid. As shown in Figure 3, pointer ptr points to an
integer of vector in the local memory. After the integer
is moved to the global memory, the ptr still points to
the original address, where the value might be changed
to other elements of the vector. Therefore, this pointer
becomes invalid. In a unified address space, this kind
of pointer problem will not exist. This only happens
in the systems where two or more address spaces ex-
ist. To enable the use of vector in the LLM multi-core
architecture, we need some mechanism to ensure the
validity of these pointers.

Figure 4: (1) In shared memory architecture, each
core can access to a shared memory through co-
herent cache. (2) In a normal distributed architec-
ture, each Processing Element (PE) has a large local
memory to use. (3) In LLM architecture, each SPE
only has a small local memory and there is a large
global memory on chip. Programmers need to take
care of the memory use on each SPE program.

4. RELATED WORK
STL is a software library, which provides data structures

like containers and generic algorithm for C++ program-
ming. However, the current STL implementation does not
support LLM multi-core architectures well. Many previous
works have been done to extend STL for parallel program-
ming. They extended algorithms for parallel processing for
different architectures. Work [4] and [20] implemented the
containers for parallel programming on shared memory sys-
tems. On the other hand, [8], [15], [11] and [19] focused on
distributed memory architecture.

MPTL [4] extended the STL algorithms for parallel pro-
cessing. MCSTL [20] is another project which improves the
STL algorithms for multi-core systems. Their works use
existing STL container for their algorithms. On the other
hand, Intel TBB [14] developed both parallel algorithms and
containers. The containers can be concurrently accessed by
multiple threads. However, all three of them only concen-
trated on the shared memory systems as shown in Figure
4(a), without any consideration of distributed memory ar-
chitecture as in Figure 4 (b) and limited local memory ar-
chitecture as shown in Figure 4 (c).

POOMA [11], AVTL [19], STAPL [8], and PSTL [15] im-
plemented template container classes on distributed memory
architecture as in Figure 4 (b). The classes can be accessed
by different threads concurrently. Their works did not con-
sider the case that single Processing Element (PE) may only
have a small size of local memory and simply assume the size
of local memory is large enough. Consequently, their work
are also not applicable for LLM multi-core architecture in
Figure 4. Figure 4(b) and (c) shows the main differences
between the distributed memory architectures and LLM ar-
chitectures. In a distributed memory architecture, each core
have direct access to a large memory. If a core is assigned
a computation task, its local memory is sufficient for the
execution of program. However, in LLM architecture, if a

program that run on SPE uses a vector which contains more
than 256 KB data in the local memory of SPE, the execu-
tion will crash. Programmers need to take care of the size
of vector and may have to adjust the vector size on the local
memory of SPE. This strongly affects the program develop-
ment progress. In this work, we address this problem by
providing a vector class which hides the programming com-
plexities inside the vector functions. In addition, different
data transfer granularity is provided by our vector class to
achieve better performance. We also propose a mechanism
to ensure the validity of pointers-to-elements when the vec-
tor elements are moved into the global memory.

5. OUR APPROACH

5.1 Vector Management on Global Memory
The local memory of SPE is only 256 KB. If we want to

increase the capacity of vector class for containing more than
256 KB of objects on the local memory, it is necessary to
place some vector data onto the global memory and therefore
requires a scheme to manage them. Since SPE cannot di-
rectly access the global memory, it cannot perform memory
allocation on it. In addition, although DMA is an efficient
way of data transfer, it still has a longer latency compared
to the time spent on arithmetic operations. If SPE thread
simply uses DMA to manage data, the whole process may
have a long latency and then cause more penalty. Therefore,
our PPE library thread also supports some basic operations,
e.g. memory reallocation, on the global memory.

The Cell/B.E. architecture supports two different ways
of communication: DMA and mailbox. DMA provides the
functionality of transferring data from one memory to an-
other memory, e.g. from the local memory of SPE to the
global memory. Mailbox supports thread to thread com-
munication, such as SPE thread and PPE thread, which
can be leveraged for synchronization. These two commu-
nication methods have different advantages in different sit-
uations. DMA is fast in transferring data and capable of
transferring a large amount of data in a time, but mailbox
is slower and can only exchange 32 bits short messages. On
the other hand, DMA itself can not directly allocate space
on the global memory. What is required is a hybrid way of
DMA and mailbox. Figure 5 illustrates the whole process
of reallocating vector on the global memory. In the prede-
fined space in the global memory, there has a data structure
named msgStruct. Different operations have different ele-
ments in the msgStruct. In this example, we only show the
information needed for reallocation operation – vector id
specifies which vector should be reallocated, request size
indicates the new vector capacity, data size is the number
of vector elements that needs to be moved and new addr can
be used to return the new global address after reallocation.
When SPE thread wants to communicate with PPE thread,
it first sends the parameters to msgStruct in the global mem-
ory by DMA. Then, it sends the type of operation to PPE
thread, and starts waiting for the restart signal from the
mailbox. spe out intr mbox read() is leveraged in the PPE
thread to read the interrupt mailbox for the message from
SPE thread. By interpreting the message, the PPE thread
can know which basic operation needs to be performed. In
this case, memory reallocation is requested and the realloca-
tion is performed with the help of msgStruct. After the PPE
thread reallocates the vector data, it puts the new global ad-

Figure 5: (1) The whole process for memory real-
location is shown and the number means the order
of steps. (2) Important information for reallocation
is contained in a data structure named msgStruct,
which is located in the global memory. It is 16 bytes
large, but elements can be different depending on
the type of operations.

dress in msgStruct, and sends back a restart signal through
mailbox to SPE thread to let it DMA in the msgStruct.
Then, PPE thread keeps on listening to the next mailbox
message. Finally, SPE thread receives the new global ad-
dress of vector data and continues executing. Since the PPE
thread uses the interrupt mailbox, the mailbox read func-
tion is a blocking function. When PPE thread is waiting for
mailbox message, it consumes very few CPU resources.

Our PPE library thread supports four operations on the
global memory: i) allocation ii) re-allocation iii) memory
copy iv) deallocation. All operations use the above commu-
nication scheme. Allocation is used when a vector is initial-
ized. It allocates space on the global memory, and stores
the start address of the allocated memory and its size in
msgStruct. Reallocation is used when the memory of a vec-
tor needs to be expanded or shrunk. The PPE thread first
looks up the vector record, then it reallocates the vector.
The new size of space is obtained from msgStruct. Note that
msgStruct is used for passing parameters between the PPE
and the SPE, as discussed in the last paragraph. Memory
copy operation is similar to the function memcpy() and it is
used for insert() member function in vector class. Besides
the memory copy functionality, this operation also checks
whether the space on the global memory is full and needs
reallocation. It will reallocates the memory for vector if nec-
essary. SPE thread will provide the necessary information
in the msgStruct, such as the source address, the destination
address, and the data size. The deallocation operation sim-
ply uses the global address to free the allocated space in the
global memory. The allocation and reallocation operations
are implemented for supporting dynamic memory manage-
ment. Although pre-allocated buffers for SPE program are
very common, the static use of the memory has disadvan-
tages: i) if the number of vector elements is small, the uti-
lization of the allocated memory is quite low; ii) if the num-
ber of vector elements is very large, memory overflow will
happen. To better utilize the memory in the global memory,
we definitely need these two functions. As for memory copy
operation, we can also implement only through DMA and
SPE thread. There may have two schemes. The first one

is done by transferring the block of vector elements on the
global memory into a buffer in the local memory, and then
transferring them from this buffer to the new destination
address on the global memory. However, the DMA transfers
on Cell/B.E. request the transfer size be 1, 2, 4, 8 or 16
bytes, or a multiple of 16 bytes to a maximum of 16 KB.
This means this scheme can only be used when a distance
between the destination address and the source address is
a multiple of 16. In real application, it is a rare case. The
other scheme is to transfer a whole block of elements that
contains the source address into SPE buffer. After that, SPE
thread moves the elements in SPE buffer, and then transfers
the block back to the global memory. Compared to simply
using PPE thread to do memory copy, this scheme moves
the computation overhead of memory copy to SPE thread
whose execution environment is slower than PPE, and also
introduces extra DMA transfers which will degrade the per-
formance. Therefore, we think that using PPE thread and
mailbox is the best choice for memory copy.

5.2 Vector Management on Local Memory
In the local memory of SPE , we use a buffer to cache the

vector elements. The purpose of using SPE buffer is to im-
prove the performance of the vector retrieval function, since
if vector can find its elements in the local memory, then there
is no need to use DMA to get it from the global memory.
With a constant-sized buffer in our newly implemented vec-
tor library, “not-recently-needed-data” must be evicted from
the local memory to the global memory if more elements
than SPE buffer can contain are brought into the local mem-
ory. Since vector data are always located in the same region
of the local memory, memory fragmentation in the current
STL vector class will not exist in our scheme. The vector
elements are organized in blocks and several blocks can co-
exist in the SPE buffer. Besides the actual data, each block
also contains a block index and the number of elements in
the block. The block index is the index of the first element in
this block. Inside a block, the order of elements is the same
as their original orders in the vector. When vector wants
to locate an element, it first calculates the block index this
element belongs to. As shown in Figure 6, by simple calcula-
tion, vector can know the 133th element is in the block with
block index 128. Then, we can check whether this block
is in the local memory or not. If the requested element is
not in the local memory, the whole block that contains the
requested element will be fetched into the SPE buffer. In
addition, the global address of the requested block Grb can

Figure 6: (1) The block size of vector is 16 and the
elements are divided into blocks by their index to
the first element of the vector. (2) In order to get
the block index of the element with element index
133, we can simply calculate it by 133/16 ∗ 16 = 128.

be calculated by:

Grb = Gs + Indexrb × element size

where element size is the number of bytes that an element
occupies, Indexrb is the block index of the requested block,
and Gs is the global address of the first element in vector.
Gs is a member of our vector class, which is stored when
allocation or reallocation happens. Each time vector allo-
cates or reallocates the space on the global memory, a new
Gs will be generated, be stored in msgStruct and finally be
transfered to SPE.

Our vector implementation is similar to software cache
and two types of SPE buffer, Direct-Map and Associative,
are implemented. In the former one, we keep all the blocks
in an array and use the block index to check if it is valid.
As for associativity buffer, we have a hash table with linked-
list data structures. The number of sets is the quotient of
total number of cache blocks divided by associativity, and
the sets is implemented as an array. Each set has a linked
list of empty blocks and a linked list of valid blocks. Each
time when we need to add a block, we remove one from the
empty list and add it to the valid list. If the program needs
one more block but there is no more blocks in the empty
list, we use Least Recently Used (LRU) replacement policy
to replace the oldest block in the valid list. The data in the
oldest block will be written to the global memory. On the
other hand, if one block is invalidated, we remove it from
the valid list and add it to the empty list.

5.3 Vector Function Implementation
Our aim is to provide a vector with the same semantics as

the current STL vector. The implementation complexities
are hidden inside each library function. We implemented all
the member functions of vector but only 3 commonly-used
vector functions (at, push back and insert) are shown in
this section, due to the limited pages of the paper.

at() is the retrieval function. It receives an offset as pa-
rameter and returns a reference to the vector element. Gen-
erally, in order to return a reference to the vector element,
vector keeps a copy of the requested element on the local
memory. In our implementation, it first checks if the cur-
rent vector elements on the local memory is the requested el-
ements. If they are not the requested ones, this function will
get the requested elements from the global memory and put
the existing data on the local memory to the global memory
by non-blocking DMA transfers. Since this function does
not require memory allocation, the data communication can
be all efficiently handled by DMA operation.

push back() is an efficient way of inserting elements. It
inserts the elements in the back of the vector data. It first
checks whether the block that contains the inserting position
is in the local memory. If yes, it directly inserts the element.
Otherwise, it brings in the block by DMA first, then insert
operation can be made. Besides the operations in the local
memory, push back() also checks if the allocated region in
the global memory is full. When the original space is full, it
will reallocate new space in the global memory.

insert() allows the users to insert elements in arbitrary
position of the vector. This operation requires moving all
the elements after the inserting position on the global mem-
ory to give enough space for the inserting elements. Vector
class uses the PPE thread to perform the memory copy op-
eration. We illustrate the insertion procedure in Figure 7.

Figure 7: Flow chart of insert() function: (1) Write
the elements from the local memory to the global
memory to avoid data inconsistency that introduced
by elements shifting on the global memory. (2) Use
mailbox to send message to PPE thread. (3) PPE
thread completes the shifting and sends a response
message. (4) SPE thread finishes insertion on the
local memory of SPE.

The function first checks whether the inserting position is
after the last element of vector. If yes, it only need to call
push back() function to insert the element. Otherwise, the
block containing the inserting position and all blocks behind
this position will be moved to the global memory. Then this
function shifts the elements after the inserting position on
global memory. The memory shift process is handled by the
memory copy operation which is supported by PPE thread
as we mentioned in Section 5.1. Finally, the block that con-
tains the inserting position is fetched to the local memory,
and the element is inserted at the inserting position.

5.4 Iterator Implementation
iterator of vector class is like a cursor that allows user

sequentially access the elements in the containers. Similar
to the iterator of current STL vector, we implement three
types of operators — random access iterator, forward iter-
ator, and bidirectional iterator, which allow the user to do
the pointer arithmetic, and support pointer motion in both
directions. The iterator of STL vector is actually a pointer
to the vector elements. As the pointer problem discussed in
Figure 3, iterator needs to consider the situation that the
elements may be scattered between the local memory and
the global memory, instead of assuming all elements are lo-
cated within one address space. Besides, it must be aware of
different copies of data in the global memory and the local

memory. Otherwise, it will lead to data incoherence prob-
lem. In our implementation of iterator in vector class, these
two situations are considered, and therefore there will not
have any data incoherence problem. Our iterator keeps a
pointer that points to the vector class instance, and it has
a cursor parameter to keep the displacement between the
current position and the position of the first element of the
vector. When SPE program calls the ∗ operator of itera-
tor, the iterator passes the cursor as a parameter to vector
function at() and calls it. The at() function will then returns
the reference to the element indicated by the cursor. The
purpose of doing this is that iterator can use the element
in the SPE buffer of vector instead of creating another copy
of element data in SPE local memory. In addition, since
at() has handled the data distribution and communication,
the cursor can indicate the vector element without knowing
its location. For the pointer arithmetic and pointer motion
operators, the arithmetic operation is applied on the cursor,
e.g. for ++ operator, iterator increments the value of cursor
by 1, and then returns the current iterator.

5.5 Pointer Resolution
To ensure that the pointers pointing to the vector elements

are valid, we develop a mechanism to bring in the requested
vector elements into SPE local memory when necessary. To
be able to do it, we first need to identify all potential point-
ers1 that may point to a vector element. This process needs
helps of other pointer analysis tools or can be done manu-
ally. Second, pointer management functions must be used
to manage them. We provide three functions for handling
pointers:

template〈class Tp〉 void∗ ppu addr(vector〈 Tp〉, int)
void∗ ptrChecker(void∗)
void∗ s2p(void∗)

ppu addr() is used to return a global address to the first
pointer that is assigned an address pointing to a vector ele-
ment. The reason why we return global memory address is
that the local address is not uniquely mapped to a vector el-
ement. It’s because the SPE buffer for vector is shared by all
vector elements, and different vector elements may have the
same local address but different global addresses. By using a
local address to identify different vector elements is therefore
impossible. ptrChecker() first checks whether the pointer is
pointing to a vector element. If it is, the function checks
whether the element is in the SPE vector buffer. If the re-
quested element is in SPE buffer, then this function returns
its local memory address. Otherwise, it fetches the elements
into SPE buffer, and then returns its local memory address.
In addition, if the parameter of ptrChecker() was modified
to other local pointer and therefore not pointing to any vec-
tor element in the global memory, the function just returns
the original value. s2p() is used to restore the pointer ad-
dress back to a global address. This function only processes
the pointers that are transformed by ptrChecker().

Figure 8 shows the process of pointer management needs
to be done manually. In the Figure 8 (a), all potential point-
ers (pointer a, b and c) are highlighted by red color. At
Line 3, pointer a is initialized with the address of a vector

1We call the pointer that may point to a vector element as
potential pointer. Potential pointers are either once assigned
to a local memory address of a vector element or assigned
by another potential pointer.

Figure 8: Pointer a is assigned a global memory
address by function ppu addr. ptrChecker checks
whether the pointer is pointing to a vector element
and returns its local address. s2p restores the ad-
dress of the potential pointer from a local address to
a global address.

element, and it is a potential pointer that points to a vector
element. Pointer b becomes potential pointer, since the as-
signment in Line 5 shows b gets the value of a. Similarly, c
is also the potential pointer. In the Figure 8(b), we change
the assignment to pointer a by function ppu addr() in Line
3, and the pointer a now contains a global address. Then,
at Line 4, ptrChecker() is added into the original code. It
checks its address and fetches the vector element of vec to
SPE local memory if necessary, and transforms the address
of a to its local address. After accessing the content of a, we
use s2p() in Line 6 to restore the address of a to the global
address of the element that it points to. Note that if the con-
tent pointed a is not accessed in the program, there is no
need to use our interface to ensure the pointer validity. For
example, in the Figure 8 (a), Line 5, 6 are pointer initial-
izations, not data read or data write, then no management
function is needed in the Figure 8 (b).

5.6 Comparison With Software Cache
Software Cache [9, 10] is a technique that allows the data

sets to span over the local memories of SPEs and the global
memory. Software cache can fetch/store data from the global
memory by replacing DMA calls with software cache read-
/write interfaces. However, it is complicate or even impossi-
ble to be used to extend the vector class on Cell SPE, since
it is mainly used for accessing data on the global memory.
Specifically, the data are originally generated on the global
memory, and using software cache can reuse the data on the
local memory. Although the IBM Single Source Research
Compiler [10] allocates SPE program data in the global
memory and has the compiler and runtime automatically
manage the movement of the data between the global mem-
ory and local memory, programmers initially needs to know
the global address. Therefore, programmers need to explic-
itly program the dynamic allocation code on both PPE pro-
gram and SPE program. We illustrate the complexities of
using software cache to manage vector data by transform-
ing the original code in the Figure 2 into the code in the
Figure 9. Figure 9 shows one scheme about how software
cache manages vector data. Two points need to be pointed
out: i) Programmers must create a new thread to allocate
space in the global memory and send the global address to
the SPE code through mailbox. It’s error-prone and counter-
intuitive. However, we provide a library thread on the PPE
and programmers only need to directly call it and all com-

Figure 9: Using software cache to extend the vector
class: (1) Programmers need to explicitly write a
PPE thread to allocate memory for vector on global
memory. (2) In the SPE code, a software cache can
only support one data type, therefore different types
of data requires different declarations of software
caches. (3) If there are more than one template
classes used in vectors, several versions of vector
functions need to be implemented. In this example,
there must be two versions of push back functions if
vec2 is used, one uses cache int for cache wr, and the
other one uses cache long for cache wr.

plexities are hidden. ii) If there are plenty of data type in
the SPE code, the software cache requires programmers to
explicitly declare that number of software cache, since one
software cache only supports one data type. Even worse, if
you want to warp software cache functions to implement vec-
tor class, it is also complex. We need to implement different
push back functions for different data type, since cache wr
needs to access the correct cache. With our vector class, the
only change is a library function call in the PPE code.

6. EXPERIMENTS

6.1 Experiment Setup
Our experimental environment is the Cell Processor in

Sony PlayStation 3, installed with Fedora 9 and IBM SDK
version 3.1. We conduct experiments on 7 benchmarks —
heap sort [2], radix sort [2], dijstra [1], FFT [13], invfft [13],
SOR [18], and sparse matrix [18] for measuring the perfor-
mance and effectiveness of our technique. The basic descrip-
tions of different benchmarks and the number of elements in
each benchmark are shown in Table 1. We use mftb() and
time() to measure the runtime. To minimize the impact of
hardware and operating system, we execute each experiment
10 times and take the average of them.

6.2 Programmability Improvement
To demonstrate the effectiveness of our vector class, we

apply our vector and the current STL vector class on the
benchmark heap sort. The code size of this benchmark is
36432 bytes, the size of global data is 12340 bytes and the
stack size is less than 1 KB. The remaining space can be used
for vector. In this experiment, we use a direct map buffer

Benchmarks Description Max Data Size
(# of Elements)

heap sort heap sort algorithm 1,000,000
radix sort radix sort algorithm 2,000,000
FFT FFT algorithm 4,196,352
invfft Inverse FFT algorithm 4,196,352
dijkstra dijkstra algorithm 1,003,000
SOR Successive Over-relaxation 1,000,000
sparse matrix Sparse Matrix Multiply 2,100,001

Table 1: Description of benchmarks

for our vector which can contain 16384 integers and change
the input data from 100 integers to 5, 000, 000 integers.

As shown in Figure 10, the original STL vector class can
only support 8, 192 integers at most. This is because vector
class creates large fragmentations which we will delve into
more explanations in the next paragraph. In addition, there
is no management of vector data between the global mem-
ory and the local memory. When the data exceeds 8, 192
integers and vector starts to reallocate the memory space,
the SPE program crashes. However, our vector class can
handle more than 5, 000, 000 integers. We also observe that
although our vector class has management overhead, it does
not have a significant impact on the performance of the ap-
plication when the input data size is not large. For input
data size 8, 192, the additional overhead caused by our vec-
tor functions is 7% of the runtime of the original STL vector.

Figure 11 shows details of the fragmentation problem caused
by the current STL vector classes on the local memory. Let
us assume the first memory allocation starts at memory ad-
dress s0 and it allocates 4 bytes. Since each time vector
will reallocate 2× space of its current allocated memory size
from the end address of the current memory allocation, the
vector will allocate spaces at address s0+4 for the 1st reallo-
cation, at address s0+12 for the 2nd reallocation, · · · , and at
address s0 + 2n+2 − 4 for the nth reallocation. Even worse,
the reallocation will never reuse the memory space before
its current space, since it is never large enough to support
the required memory space. In processors with OS monitor-
ing, memory fragmentation caused by vector can be reused.
However, in a processor like SPE, which does not have OS,
several kilobytes of memory fragmentation is wasted.

Figure 10: (1) The original vector class can contain
at most 8192 integers. (2) Our new implemented vec-
tor class can support almost unlimited vector data.

Figure 11: Severe fragmentation will be caused by
the current STL library on the local memory.

Another interesting observation is that the runtime of
benchmark that using our vector class has a higher runtime
than that using the current STL vector when the input data
size is very small, e.g. less than 500 integers. This is because
of the high overhead of initialization of our vector class. In
this experiment, the SPE buffer can contain 16384 elements
and this buffer is divided into 1024 blocks. Consequently,
at the initialization time, vector needs to allocate memory
for all these blocks which creates high overhead. On the
contrary, STL vector only reallocates for several times for
few hundreds of elements, and the reallocation for a small
memory space is much cheaper.

6.3 Impact of Vector Management Parameters

6.3.1 Impact of Buffer Size
In this experiment, we evaluate the effectiveness of the

SPE buffer by using different buffer sizes on different bench-
marks. A larger buffer size means buffer can contain more
data in SPE local memory, and the performance should not
get worse. We fix the block size2 to 16, and increments the
total buffer size from 512 to 4096 by increasing the number of
blocks, since buffer size = number of block × block size.

As shown in Figure 12, the runtime of heap sort, FFT,
SOR, sparse matrix and invfft decreases as the total buffer
size increases. As for dijkstra benchmark, we observe that
there is a big drop in runtime when the data size increases
from 512 to 1024. This is because there are three vectors
in this benchmark and each uses only 1000 elements which
can be all contained in SPE buffer. It results in a significant
drop in data transfer overhead, and the total runtime of
the program. Another interesting thing is that, the runtime
of radix sort is not affected by the buffer size. Since the
algorithm accesses the elements sequentially, when its data
size is larger than the buffer size, there are only misses on
access to the first element of a block.

6.3.2 Impact of Block Size
In this experiment, we evaluate the impact of block size

of buffer on different benchmarks. The total buffer size is
fixed to 512 elements and the direct map buffer is adopted.
The block size is also the granularity of communication be-
tween the local memory of SPE and the global memory. A
larger block size provides the functionality of prefetching
as it brings in a few nearby elements together to the local
memory.

2SIZE in this paper means the number of elements with one
data type, e.g. buffer size 10 means the buffer can contain
10 elements.

Figure 12: The block size is fixed at 16 and the buffer
size is changed from 512 to 4096.

As we observe in Figure 13, radixsort can be improved
by simply increasing the block size of the buffer. Because
it accesses data sequentially in nature, a large block size
takes advantage of data prefetching and higher data trans-
fer bandwidth. However, most benchmarks can achieve the
optimal performance for the block sizes between 16 and 64,
since there is a trade-off between the transfer granularity
and data locality. When the block size is small, increasing
the block size can increase the reuse the data. After some
time, when increasing the block size, the data locality is
not increased too much but the overhead introduced by the
larger transfer size increases a lot.

6.3.3 Impact of Associativity
In this experiment, we evaluate the effectiveness of dif-

ferent buffer associativity in different benchmarks. In all
investigations of buffer associativity, the SPE buffer of vec-
tor is set to 32 blocks with 16 elements in each block. Since
this experiment only compares the effectiveness of buffer as-
sociativity, we do not use all the local memory of SPE. The
purpose of using a buffer with a higher associativity is to de-
crease the miss rates and reduce the number of DMA trans-
fers. In the implementation of software buffer, a higher asso-
ciativity will incur higher computations, such as the compu-
tation spent on looking up the management data structure.
On the other hand, higher associativity may have a better
hit ratio. If the benefit brought by high hit ratio beats the

Figure 13: The buffer size is fixed at 512 and the
block size is changed from 4 to 256.

Figure 14: 4 different associativities of vector buffer
are implemented and the effect on different bench-
marks are shown.

computation overhead, higher associativity is better. Other-
wise, higher associativity will degrade the performance. The
reason here explains all results shown in Figure 14. However,
some benchmarks are explained in more details.

In the benchmark heap sort, direct map buffer performs
the best. It is because the cheaper computation cost on
looking up blocks compensates the performance degrada-
tion caused by higher data miss. 4-way associative buffer
performs better than 2-way associative buffer, since it has
a higher hit ratio with little increase of computation cost.
8-way associative buffer has the highest hit rate, since the
increase of computation overhead exceeds the decrease in
communication cost that higher hit ratio brings. In the ex-
periments of FFT and invfft, associative buffer always per-
forms better. All associativities have the same miss rate,
and their runtime increase with the increase in associativity
due to higher computation cost. Direct map buffer almost
has 2 times of runtime as that of associative buffer, since
it has only about 2 thirds of hit rate as that of associative
buffer. In addition, We observe that associativity will not
affect the benchmark radixsort, and conversely introduces
more computation overhead. The data access pattern of this
algorithm is sequential, and the program will always have a
miss for the first access in a block due to the limit size of
SPE buffer. Therefore, associative buffer performs worse
than direct-map buffer as it has a higher computation cost
as providing the same hit rate.

6.4 Scalability
In this experiment, we evaluate the scalability of bench-

marks that uses our vector class. Vector class used in the
benchmarks is implemented with direct map buffer which
has 32 blocks and block size is 16. We run identical program
over different number of cores, and compare the runtime to
evaluate the scalability.

As shown in Figure 15, dijkstra exhibits a good scalability
which only has a 1% increase in runtime when we scale up
the number of execution cores. FFT also only has 10% in-
crease in runtime when the number of cores is increased to 6.
However, heap sort and radix sort show a higher percentage
of increase in runtime. Our analysis of benchmarks reveals
that the additional overhead comes from cores competition
over shared resources, e.g. DMA engines.

Figure 15: Comparison of runtime when execute
benchmarks on different number of cores.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose a vector class with data manage-

ment on Limited Local Memory (LLM) multi-core architec-
ture. Our implementation provides the same interface as the
STL vector class and the programming difficulties in data
management are hidden inside the vector functions. Our ex-
periments shows that our vector has improved programma-
bility significantly. On the other hand, when the vector data
is small enough to enable the execution of the original STL
vector, our vector class has additional 7% runtime overhead.
In addition, we implement a software-managed buffer to re-
duce the data transfers between the local memory of SPE
and the global memory. Finally, we present a scheme to
assure the validity of the pointers which point to a vector
element. Our future work will focus on implementing other
STL containers on LLM multi-core architectures. More flex-
ible caching techniques on LLM architectures also will be in-
vestigated, including variable-length cache line and replace-
ment policy. As future multi-core architectures are likely
to have limited local memory, improving programmability
on LLM architecture can greatly improve the programming
efficiency.

8. REFERENCES
[1] http://en.wikipedia.org/wiki/dijkstra%27s algorithm.

[2] http://users.cis.fiu.edu/w̃eiss/dsaa c2e/sort.c.

[3] http://www.sgi.com/tech/stl/.

[4] D. Baertschiger. Multi-processing template library.
Master’s thesis, UniversitéžŞe de Gen‘eve, 2006.
http://spc.unige.ch/mptl.

[5] K. Bai and A. Shrivastava. Heap data management for
limited local memory (llm) multi-core processors. In
Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software
codesign and system synthesis, CODES/ISSS ’10,
pages 317–326, New York, NY, USA, 2010. ACM.

[6] K. Bai, A. Shrivastava, and S. Kudchadker. Stack
Data Management for Limited Local Memory (LLM)
Multi-core Processors. In ASAP ’11: Proceedings of
the 2011 International Conference on
Application-specific Systems, Architectures and
Processors, 2011.

[7] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan,
and P. Marwedel. Scratchpad memory: design
alternative for cache on-chip memory in embedded

systems. In CODES’02:Hardware/software codesign,
pages 73–78, New York, NY, USA, 2002. ACM Press.

[8] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce,
T. Smith, G. Tanase, N. Thomas, X. Xu, M. Bianco,
N. M. Amato, and L. Rauchwerger. Stapl: standard
template adaptive parallel library. In Proceedings of
the 3rd Annual Haifa Experimental Systems
Conference, SYSTOR ’10, pages 14:1–14:10, New
York, NY, USA, 2010. ACM.

[9] T. Chen, T. Zhang, Z. Sura, and M. Tallada.
Prefetching irregular references for software cache on
cell. In CGO’08:The sixth annual IEEE/ACM
international symposium on Code generation and
optimization, pages 155–164, New York, NY, USA,
2008. ACM Press.

[10] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu,
T. Chen, P. H. Oden, D. A. Prener, J. C. Shepherd,
B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, and
M. Gschwind. Optimizing compiler for the cell
processor. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’05, pages 161–172, Washington,
DC, USA, 2005. IEEE Computer Society.

[11] J. R. et al. Pooma: A framework for scientific
simulations on parallel architectures. In G. V. Wilson
and P. Lu, editors, Parallel Programming using C++,
pages 553–594. MIT Press, 1996.

[12] B. Flachs, S. Asano, S. Dhong, H. Hofstee, G. Gervais,
R. Kim, T. Le, P. Liu, J. Leenstra, J. Liberty,
B. Michael, H.-J. Oh, S. Mueller, O. Takahashi,
A. Hatakeyama, Y. Watanabe, N. Yano,
D. Brokenshire, M. Peyravian, V. To, and E. Iwata.
The microarchitecture of the synergistic processor for
a cell processor. IEEE Solid-state circuits,
41(1):63–70, 2006.

[13] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,
T. Mudge, and R. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on, pages 3–14, 2
Dec. 2001.

[14] Intel Corporation. Reference for Intel Threading
Building Blocks, 2006.

[15] E. Johnson. Support for Parallel Generic
Programming. PhD thesis, Indiana University,
Indianapolis, IN, 1998.

[16] S. C. Jung, A. Shrivastava, and K. Bai. Dynamic
Code Mapping for Limited Local Memory Systems. In
ASAP ’10: Proceedings of the 2010 International
Conference on Application-specific Systems,
Architectures and Processors, pages 13–20, 2010.

[17] Y. Kim, J. Lee, A. Shrivastava, and Y. Paek.
Operation and data mapping for cgras with
multi-bank memory. SIGPLAN Not., 45(4):17–26,
2010.

[18] R. Pozo and B. Miller. Scimark 2.0.
http://math.nist.gov/scimark2/.

[19] T. J. Sheffler. A portable mpi-based parallel vector
template library. Technical report, 1995.

[20] J. Singler, P. Sanders, and F. Putze. Mcstl: The
multi-core standard template library. In Euro-Par
2007 Parallel Processing.

