
Stack Data Management for Limited Local Memory (LLM) Multi-core Processors

Ke Bai, Aviral Shrivastava and Saleel Kudchadker
Compiler Microarchitecture Lab

{Ke.Bai,Aviral.Shrivastava,Saleel.Kudchadker}@asu.edu

Abstract—Limited Local Memory (LLM) architectures are
power-efficient, scalable memory multi-core architectures, in
which cores have a scratch-pad like local memory that is software
controlled. Any data transfers between the main memory and the
local memory must be explicitly present as Direct Memory Access
(DMA) commands in the application. Stack data management of
the cores is an important problem in LLM architecture, and
our previous work outlined a promising scheme for that [1]. In
this paper, we improve the previous approach, and now can i)
manage limitless stack data, ii) increase the applicability of stack
management, and iii) perform stack management with smaller
footprint on the local memory. We demonstrate these by executing
benchmarks from the MiBench suite on the IBM Cell processor.

Index Terms—Stack, local memory, scratch pad memory,
embedded systems, multi-core processor, IBM Cell, MPI

I. INTRODUCTION

As we scale from a few-core processor to many core
processor, scaling the memory architecture becomes challeng-
ing. Limited Local Memory (LLM) multi-core architectures
are scalable, distributed memory architectures. In an LLM
processor each core has only a local memory without caches,
therefore is quite power-efficient. Any data transfers between
the main memory and the local memory must be explicitly
present as DMA commands in the application. The popular
IBM Cell processor [2] is a good example of LLM architec-
ture. LLM architectures are programmed in MPI-like multi-
tasking paradigm with explicit communication between the
tasks. The tasks are mapped to the cores, which means the
local memory in the core is shared by code, stack, global and
heap data of the thread. If the thread can fit into the local
memory, then the application will execute extremely power-
efficiently. Otherwise all code and data of a thread must be
managed in the local memory.

Local memories in LLM multi-core processors are very
similar to the Scratch Pad Memories (SPMs) in embedded
systems. SPM is extensively studied and techniques have
been developed to manage code [3], [4], [5], global variables
[6], [7], [5], [8], stack [8], [9] and heap data [10]. While
all these works are related, they are not directly applicable
for local memories in LLM architecture. This is because
of the difference of the memory architecture of SPMs in
embedded systems and LLM architecture: applications can
execute on embedded processors without using the SPM.
Frequently needed data can be mapped to the SPM to improve
performance and power. On the other hand, local memory is
the only memory hierarchy of the core of a LLM processor.
Therefore using local memory in LLM cores is not an
optimization, but is a necessity.

Previously, we have proposed schemes for managing
code [11], [12], heap [13] and stack data [1] in LLM archi-
tecture. This paper improves our previous stack management
technique — Circular Stack Management (CSM) [1]. CSM
essentially keeps the top few frames in the local memory, and
moves the older ones to the main memory. While effective and
efficient we identify three problems in the previous approach.
We fix them in this paper. The limitations of previous work,
and contributions of this work are as follows:

• Support unlimited stack: CSM requires that the total
amount of stack space required by the task must be
known at compile-time. As a result, it does not support
arbitrary depth of recursion. We improve this by proposing
an interface by which a core can request for dynamic
memory allocation in the main memory.

• Finite and small footprint in the local memory:
Stack Management requires a management table, which
contains information about where data is, in the local
memory or main memory. CSM assumed that this table
can be maintained in the local memory. However, the
table itself can exceed the local memory and we manage
it between the local and the main memory.

• Stack Pointer Resolution: There can be a problem when
there is a reference to a local variable of a previous
function. Data management may have moved that stack
frame that contains the variable to be accessed to the
main memory, and therefore looking it up using the local
memory address is impossible. We solve this problem,
by always using main memory addresses for pointers to
local variables.

After our enhancements, the task that executes on a core
can use unlimited stack space, work with smaller local memory
footprint, and allow access to local variables of other functions
through pointers. We demonstrate these by executing bench-
marks from the MiBench suite, executing on the IBM Cell
processor in Sony PS3.

II. CIRCULAR STACK MANAGEMENT

The Circular Stack Management (CSM) [1] scheme operates
at the level of function frames. The basic technique is to export
function frames to the main memory if there is no more space
on the local memory and bring them back when needed.

The eviction and fetch of frames is achieved by using API
functions fci and fco, that need to be inserted just before and
after every function call. Function fci(f) guarantees enough
space to accommodate the stack frame of f . If not, it evicts
as many oldest functions as required to make enough space.
Similarly fco() makes sure the frame of caller is in the local



Fig. 1. Pointer Threat: When the frame of F1 is evicted to the main memory
and F2 comes in, the pointer ptr in F2 which refers the local variable a in
the frame of F1 cannot be referenced.

memory. If not, then it is brought from the main memory.
All this management requires a table, which contains the
information about whether a function frame has been moved
to the main memory, and their main memory address. Next
section describes some key limitations of the existing CSM
approach, and our approach to improve them.

III. ENHANCEMENT OF CIRCULAR MANAGEMENT

A. Pointer Threat and Resolution

CSM works efficiently for applications that do not have
pointer references to any previous evicted frames. However,
if so, then there is a problem. Fig. 1 illustrates the pointer
threat. Fig. 1 (a) shows that the pointer ptrA pointing to the
local variable a is passed as a parameter to recursive function
F2. The total stack space required for this application will be
50 + 30 × 3 = 140 bytes. 80 bytes of stack space requires
stack management. When F1 is called, its function frame is
created in the stack, with a location for a. Suppose the frame of
function F1 starts at address 0x3180, and space is allocated
for a at 0x3150. Then after the assignment, ptrA contains
the value 0x3150. Now all goes fine until the first call to
F2. At this point, the function frames of both functions F1
and F2 are in the stack. Now when F2 (with k = 3) calls
another instance of F2 (with k = 2), the CSM function fci
will remove F1 out of the local memory, and relocate it to
the main memory. When the execution calls the third instance
of F2 (k = 1), it falls into the base case to update the value
of ptrA. The assignment instruction will update the contents
of local memory address 0x3150 to 1000. This is clearly
wrong, since the variable a of function F1 is actually in main
memory, and not in the local memory.

The challenge here is that, the kind of code illustrated in
Fig. 1 (a) is all too common, and this pointer problem will
show up in any data management solution, not specific to
CSM. Resolving the pointer addresses is not trivial. If the
variable pointed by pointer is relocated to the main memory,
to find its global address becomes a challenge, since we are

Fig. 2. Pointers in Fig. 1 resolved by library functions.

trying to find a global address from a local address, but the
relation from local address to global address is a one-to-many
relation. As a result, whenever a pointer is set, it must be
set to a global address, rather than a local address. Fig. 2
illustrates the mechanism of our pointer resolution. Fig. 2 (a)
shows two changes in the program that was shown in Fig.
1 (a). The first change is that the initialization of the pointer
ptrA has been changed to s2p(&a). The function s2p converts
the local address of a variable into the global address by first
finding which function stack frame the pointer belongs to (e.g.
F1). Then it computes the offset of the pointer variable (e.g.
&a) as the relative displacement from the start address of the
frame (F1) in the local memory to the local pointer address.
Finally, it returns a global address, which can be calculated
by first getting the global start address of this function frame
(F1) that is stored by fci function before the F1 is called
and then subtracting the displacement. Fig. 2 shows that the
stack top is at the local address 0x3180, which is stored in
the management table. When ptrA is initialized, it will get the
global address of the variable by the help of s2p function.
This is done by firstly computing the local address 0x3150
for a. Then the offset is computed as 0x3180 - 0x3150
= 0x30. The start global address of the function frame of
F1 is looked up from the table, and is 0x181340. Using
these, we can compute the global address of the variable a
as 0x181310. The second change is when there is a write
to ptrA in function F2. The write to ptrA has been replaced
with ptr wr function. If there were a pointer read, then we
would need to use the ptr rd function. The functions ptr rd
and ptr wr work directly with the main memory using DMA
calls. ptr wr(ga, val, sizeof(val)) just writes the val in the
global address specified in ga, by a DMA call. In this example,
ptr wr can modify a to the value 1000 directly in the main
memory. ptr rd(ga, size) would instead just bring the value
from ga to the local memory in a small buffer, and returns
its address. When some other pointer is read, this buffer
will be overwritten. By performing this direct main memory
transaction, we do not create any data coherency problems.

B. Memory Overflow and Its Resolution

There are two aspects of memory overflow in the previous
approach. One is the overflow of the memory space in the



main memory, and the second is the overflow of the Stack
Management Table or SMT in the local memory.

CSM should allocate a large enough space at the start of
the program in the main memory to accommodate all the stack
data of the execution cores. But it is impossible in general due
to recursive functions. For recursive functions, the stack space
required may be unbounded. And when the main memory
allocation fills up, any further DMAs can write into the address
space of other execution cores, causing an access fault in the
best case, and wrong results in the worst. This implies that
at some time, the execution core must request the main core
to allocate more memory. Since this cannot be done by a
DMA call, and therefore mailbox facility in the Cell processor
is utilized. In addition, we implement a new thread on the
main core that will continuously listen to requests from the
execution cores, and allocate memory when requested. Then it
sends the start addresses of the allocated space to the execution
core. On the execution core, this functionality is implemented
in the fci function. Before eviction, fci checks whether space is
enough in the main memory. If not, it sends a request via the
mailbox to the main core. The memory management thread
on the main core accepts this request, allocates more memory
(e.g. two times) than the request, and finally sends the start and
end address of the newly allocated memory to the execution
core, which can then be used for further stack management.
The functionality of fco is very similar, except that if all the
functions from a memory region have been brought back to
the local memory, then the memory is free-ed.

The other memory overflow problem in the CSM is that
of the overflow of the SMT. Every time fci is called, it
creates a new entry in SMT. When a function returns, its
entry can be deleted from SMT. CSM maintains SMT on the
local memory. For unbounded recursion, this table can grow
arbitrarily large, and any amount of space on local memory
will not be sufficient. Just like stack frames, the SMT itself
should be managed. In other words, some part of the SMT
must be evicted to the main memory to make space for new
entries. Dynamic management of SMT is achieved by setting
an initial fixed size of the SMT and monitoring if it gets
filled. When fci adds a new entry in the SMT for the coming
function and the SMT is full, the entire SMT is exported and
its entry pointer is reset to the start entry of the SMT. When
fco accesses the already empty table, one table-full entries are
fetched back to the local memory, and the table pointer is
set to the end entry of the table. Note that after this scheme
of dynamic management of SMT, all management is done
in constant-sized space. The memory requirements in main
memory however are still dynamic, and is managed through
the use of the memory management thread on the main core
– just like data management of function stack frames.

IV. EXPERIMENTS

We demonstrate the need and effectiveness of our approach
by experiments on the Sony Playstation 3. We implemented
our approach as a library with the GCC 4.3.2. We compile
and run benchmarks from the MiBench suite [14]. These

benchmarks are modified to be multi-threaded by keeping all
I/O functionality of the benchmark in the main thread on PPE
and the core functionality is executed on the SPE.
Enabling Limitless Stack Depth: To demonstrate the need
of our technique we executed a simple recursive function
rcount, and plot the runtimes in Fig. 3. This simple application
requires 8480 bytes for the code and 496 bytes for global
data, and the rest 246 KB can be used for stack. The function
stack frame size of this application is 32 bytes, and therefore,
without stack management, this application only works for
n < 7872.

Fig. 3 shows the recursive function only works for n <
29440 with previous stack management. This is because we
set stack region size as 16 KB for the previous technique.
Therefore, the rest 230 KB can be used for stack management
table. However, as n increases, the space in the local memory
used by the stack management table also increases, and
therefore all the rest space is used up for storing management
table entries. There is a leap when n > 512 for two CSMs.
This happens because the 16 KB for stack data have been
filled up and the eviction is needed for new stack data.

Most important observation from the Fig. 3 is that our
technique has no limitation on the stack depth that it can
support. As compared to previous technique [1], we are not
restricted by the size of the stack management table and the
memory allocation in the main memory. When the number
of entries in the table exceed the fixed size we mentioned, it
is exported dynamically to the PPE. Also our scheme does
not need array size on the PPE to accommodate the stack
frames. This is taken care of automatically by the memory
management thread in the PPE.
Increase in Applicability: Our technique promises to run any
application in the least amount of stack on the Limited Local
Memory architectures. Given a benchmark, we find out the
size of the largest stack frame, and also find out the maximum
stack depth by profiling. We then run these benchmarks using
space on local memory equal to the size of the largest function
frame plus the maximum size of stack management table.

Fig. 3. Without stack management, the recursive function rcount only works
for n < 7872. The previous CSM only support n < 29440. However, our
technique enables limitless stack depth.



Benchmark Previous CSM New CSM
Stack Sz(bytes) Runtime(us) Stack Sz(bytes) Runtime(us) Stack Sz(bytes) Runtime(us)

BasicMath 168 CRASHES 218 1575747.1 168 1582032.8
SHA 1944 CRASHES 2024 1083.7 1944 1104.3

TABLE I
(1) BasicMath and SHA can not run with the minimum stack region size without our pointer library functions. (2) These two benchmarks can run with a

larger stack size after many fails of simulations. (3) Our technique resolves the pointer problem of CSM.

Fig. 4. (1) Normalization of minimum stack region size means
size of our approach
size of previous CSM

; (2) Average space saving by our technique is 14.3%
and the improvement will be more significant if the application has a larger
function call depth.

This minimum stack size is shown in the second column of
Table I. We also show the runtime of the application, if it
fails, CRASHES is printed. It can be noted that benchmarks
BasicMath and SHA crash. Our stack management can work
with less space on the local memory. The sixth column lists the
minimum space on the local memory required by our scheme,
and the seventh column lists the time required to execute
the application with this size. The main observation is that
our technique successfully resolves the pointer problem, and
therefore works for a wide range of benchmarks.
Stack Management in Smaller Space: Our technique can
manage stack data in a smaller space on the local memory.
The minimum space that the previous approach [1] requires
on the local memory is the sum of the largest function stack
size and the size of the stack management table (SMT). The
SMT contains one entry for each function instantiation. We
manage the SMT dynamically between the local memory and
the main memory, therefore work with just one entry. As a
result our technique occupies much less space on the local
memory. On average our approach uses 14.3% less space on
the local memory. We believe that the difference will be more
significant if the application has a larger function call depth.
Using less space on the local memory is extremely crucial,
since the local memory is typically small and shared by global,
stack, heap data and the application code. In order to maximize
the flexibility of mapping, it is vital to be able to map each
individual data in as little space as possible.

ACKNOWLEDGMENT

This research was partially funded by grants from Na-
tional Science Foundation CCF-0916652, IIP-0856090, NSF

I/UCRC for Embedded Systems, Microsoft Research, SFAz,
Raytheon and Stardust Foundation.

REFERENCES

[1] A. Kannan, A. Shrivastava, A. Pabalkar, and J.-e. Lee, “A Software
Solution for Dynamic Stack Management on Scratch Pad Memory,” in
ASP-DAC ’09: Proceedings of the 2009 Asia and South Pacific Design
Automation Conference. Piscataway, NJ, USA: IEEE Press, 2009, pp.
612–617.

[2] C. R. Johns and D. A. Brokenshire, “Introduction to the cell broadband
engine architecture,” IBM J. Res. Dev., vol. 51, no. 5, pp. 503–519, 2007.

[3] B. Egger, C. Kim, C. Jang, Y. Nam, J. Lee, and S. L. Min, “A dy-
namic code placement technique for scratchpad memory using postpass
optimization.”

[4] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri,
“A post-compiler approach to scratchpad mapping of code,” in CASES
’04: Proceedings of the 2004 international conference on Compilers,
architecture, and synthesis for embedded systems. NY, USA: ACM,
2004, pp. 259–267.

[5] N. Nguyen, A. Dominguez, and R. Barua, “Memory allocation for
embedded systems with a compile-time-unknown scratch-pad size,”
in CASES ’05: Proceedings of the 2005 international conference on
Compilers, architectures and synthesis for embedded systems. NY,
USA: ACM, 2005, pp. 115–125.

[6] M. Kandemir and A. Choudhary, “Compiler-directed Scratch Pad Mem-
ory Hierarchy Design and Management,” in DAC ’02: Proceedings of
the 39th annual Design Automation Conference. New York, NY, USA:
ACM, 2002, pp. 628–633.

[7] L. Li, H. Feng, and J. Xue, “Compiler-directed scratchpad memory
management via graph coloring,” ACM Trans. Archit. Code Optim.,
vol. 6, no. 3, pp. 1–17, 2009.

[8] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic Allocation
for Scratch-pad Memory using Compile-time Decisions,” ACM Trans.
Embed. Comput. Syst., vol. 5, no. 2, pp. 472–511, 2006.

[9] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap data allocation
to scratch-pad memory in embedded systems,” Embedded Computing,
vol. 1, no. 4, pp. 521–540, 2005.

[10] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and
J. M. Mendias, “An integrated hardware/software approach for run-time
scratchpad management,” in DAC ’04: Proceedings of the 41st annual
Design Automation Conference. New York, NY, USA: ACM, 2004,
pp. 238–243.

[11] A. Pabalkar, A. Shrivastava, A. Kannan, and J. Lee, “SDRM: Simul-
taneous Determination of Regions and Function-to-Region Mapping
for Scratchpad Memories,” in Int’l Conference on High Performance
Computing (HiPC), December,2008.

[12] S. C. Jung, A. Shrivastava, and K. Bai, “Dynamic Code Mapping for
Limited Local Memory Systems,” in ASAP ’10: Proceedings of the 2010
International Conference on Application-specific Systems, Architectures
and Processors, 2010, pp. 13–20.

[13] K. Bai and A. Shrivastava, “Heap Data Management for Limited
Local Memory (LLM) Multi-core Processors,” in CODES+ISSS 2010:
Proceedings of the 8th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, 2010.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” Proceedings of the Workload Characterization, 2001.
WWC-4, pp. 3–14.


