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ABSTRACT

This paper presents a scheme to manage heap data in the
local memory present in each core of a limited local memory
(LLM) multi-core processor. While it is possible to manage
heap data semi-automatically using software cache, manag-
ing heap data of a core through software cache may require
changing the code of the other threads. Cross thread mod-
ifications are difficult to code and debug, and only become
more difficult as we scale the number of cores. We propose
a semi-automatic, and scalable scheme for heap data man-
agement that hides this complexity in a library with a much
natural programming interface. Furthermore, for embedded
applications, where the maximum heap size can be known at
compile time, we propose optimizations on the heap manage-
ment to significantly improve the application performance.
Experiments on several benchmarks of MiBench executing
on the Sony Playstation 3 show that our scheme is easier to
use, and if we know the maximum size of heap data, then
our optimizations can improve application performance by
an average of 14%.
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generation, Compilers, Optimization
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Keywords
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1. INTRODUCTION

As we transition from multi-core (few cores) to many-core
(hundreds of cores) architectures, scaling the memory archi-
tecture is one of the most important issues. Maintaining the
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illusion of a single unified memory architecture in hardware
is becoming too expensive. This is because of two main rea-
sons. First is, that the power and performance overheads of
automatic memory management in hardware, i.e. by caches
is becoming prohibitive. Caches consume about half of the
processor energy on single-core processor [8], and are ex-
pected consume much larger fraction with increase in num-
ber of cores. The second reason is that cache coherency pro-
tocols do not scale to hundreds and thousands of cores [12].
Limited local memory (LLM) architectures, in which each
core has a small local memory, is coming up as a promising
scalable memory architecture for multi-cores. Modern and
futuristic processors, especially in the embedded domain are
already being designed in LLM architecture. Examples are
the experimental 80-core Intel processor [29], and the Cell
architecture from IBM [13].

In a LLM processor, each core has access to only a small
local memory, and transfers between the global memory and
the local memory have to be explicitly specified in the ap-
plication code. For example, the Synergistic Processing El-
ements (SPEs) in the IBM Cell processor can only access a
local 256 KB memory, and all code and data that the SPE
uses must reside in the local memory. There are two closely
coupled challenges in developing applications for such archi-
tectures. First is to parallelize the given application. This
is typically done by humans, who (re-) write the application
in a threaded manner. The second is to efficiently execute
each thread on a core. If a core is unable to execute the
thread mapped to it, then the programmer must change the
way application is parallelized. This can be extremely hard,
because often applications have some natural ways to paral-
lelize them, and finding out other ways to parallelize can be
formidable. Therefore this paper primarily deals with the
second challenge of making a thread of application execute
(and efficiently execute) on a core.

If all the application code and data can fit into the local
memory, extremely efficient execution is achieved — and in
fact, this is the promise of LLM architecture. However, if the
application code and data does not completely fit into the
local memory, then explicit commands to bring the required
data in the local memory before it is used, and move the not-
needed data back to the global memory must be inserted into
the application.

While management is needed for all code and data on the
local memory, managing heap data is especially important,
since it is dynamic in nature and may not be known at com-
pile time. Heap data can easily overwrite stack data and
cause several kinds of program failure ranging from a ap-



plication crash, going into infinite loop, or simply a wrong
result. If a program is not recursive then only heap data
is dynamic, and may therefore cause a failure. In fact, the
Cell Programmer’s Guide[2] suggests to “avoid using heap
variables”. We believe, this is extremely limiting to pro-
grammer’s creativity and productivity, and a scheme to ef-
ficiently manage application heap data in a constant and
small amount of memory on the local memory is needed.

One way to semi-automatically manage heap data in the
local memory in the core of a LLM processor is through
the use of software cache [5]. Software cache is essentially a
cache implemented in software, using data structures. Soft-
ware cache is best suited to manage global data, which is
declared and allocated once. However, since heap data is al-
located dynamically in the application, managing the heap
data of an application thread using software cache requires
several changes in the application code. Not only it requires
changing the code of the thread in some non-intuitive ways,
it also requires changing the thread on the main core. In
fact, the user must create a new thread on the main core.
This solution is not only difficult to implement and debug,
but also becomes more complex as we scale the number of
cores.

This paper proposes to hide the programming complexity
in a library with simple programming interface. We enhance
the GCC compiler for the IBM Cell with this library, com-
pile benchmarks from MiBench [14] and others using it, and
then measure the runtime on Sony Playstation 3. Our exper-
iments show that our heap management scheme, while being
simple and natural for the programmer, performs at par with
a software cache implementation. When the maximum heap
size of the application can be known, our optimizations can
improve application speeds by an average of 14%.

2. LLM PROCESSORS

2.1 Limited Local Memory Architecture

The IBM Cell Broadband Engine[13] is a very good ex-
ample of a limited local memory (LLM) architecture. As
shown in Figure 1, it is a 9-core processor, with one main
core (the Power Processing Element, or PPE in Cell) and
eight small ezecution cores (the Synergistic Processing Ele-
ments, or SPEs in Cell). The main core in the Cell processor
is a 2-way Simultaneous Multi-threaded Power 5 core, while
each of the execution cores work on only one thread at a
time in a non-pre-emptive fashion. Only the main core has
Operating System, and it has direct access to the global
memory through a coherent L2 cache, while each execution
core has a 256 KB local store memory. Data communica-
tions between the local memory on the execution core and
the global memory should be explicitly managed in the soft-
ware through direct memory access (DMA) engine. The in-
terconnect bus is 128-byte wide, with more than 300 GB/s
capacity, and has over 100-deep request queue.

2.2 Thread-based Programming Paradigm

Programming on an LLM architecture is based on Mes-
sage passing interface (MPI) style thread model. It requires
programmers to have a main thread. This main controller
thread creates, distributes data and tasks and even collect
results from the ezecution threads. The main thread runs on
the main core, while the execution threads are scheduled on
the execution cores. A very simple application in this multi-
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Figure 1: The IBM Cell/B.E. is a good example of
limited local memory (LLM) architectures. There
are 8 Synergistic Processing Elements, or SPEs.
Each SPE can access only a small local memory,
and all data transfers between the local memory and
the global memory take place through explicit DMA
calls.

core programming paradigm is illustrated in Figure 2. In the
pseudo code, the main thread, executing on the main core
initiates several execution threads on the execution cores.
In the execution core thread student data structures are ini-
tialized, and operated on. Student data structure contains
two fields, id (int) and score (float) for each student.

2.3 Need of Heap Management

Normally, the local memory on the execution core is di-
vided into three segments by the software: the text region
(program code and data), heap variable region and stack
variable region [3]. The text region is where the compiled
code of the program itself resides. The function frames re-
side in the stack space, which starts from the top of the
memory, growing downwards, while the heap variables, (de-
fined through malloc) are allocated in the heap region, start-
ing from the top of the code region, and growing upwards.
The three segments share the local store, and since local
store is a constrained resource and lacks any hardware pro-
tection, heap data can easily overflow into the stack region
and corrupt the program state.

In Figure 2, for small N, the program will execute fine,
but large values of N can cause catastrophic failures, e.g.,
application crash, execution core going into an infinite loop.
However, even worse is when output is just subtly incorrect
and that too only sometimes. One way to avoid these prob-
lems, is to avoid using heap variables, however, we believe
that this is very limiting on both the creativity and pro-
ductivity of the programmer. What is needed is a scheme
that limited local memory multi-core programmers can use
to efficiently and intuitively manage heap memory of the
application.



main() {
for (i=0; i<6; i++) {
pthread_create ( ...spe_context_run(spelD)...);

}

} (a) PPU Code

typedef struct {
intid;
float score;

} Student;

main() {
for (i=0; i<N; i++) {
student[i] = malloc(sizeof(Student));
student[il.id = i;
printf(“%d\n”, student[i].id);
}

. (b) SPU Code

Figure 2: Outline of a threaded program on the Cell
processor: (a) PPU creates threads on each SPU.
(b) On each SPU some student records are allocated
and accessed.

3. RELATED WORK

Local memories in each core of an LLM are raw memo-
ries, not managed in hardware; they are software controlled.
They are very similar to the Scratch Pad Memories (SPMs)
popular in embedded systems. Banakar et. al [8] proposed
the use of raw memories in embedded systems when they no-
ticed that caches consume a very significant portion of the
power budget of even an embedded processor, like the In-
tel StrongARM [22]. They demonstrated that for the same
memory area, SPMs consume 40% less energy and 34% less
die area. However, the absence of the memory management
logic in the hardware shifts the burden of managing data on
the SPM to the programmer.

Techniques have been proposed to manage code [27, 5, 32,
23, 31, 26, 10, 11, 28, 15, 30, 24], global data [27, 6, 31, 18,
17, 20, 28, 30] and stack data [6, 23, 25, 20, 28], on the SPM,
but little work has been done towards managing heap data
25, 21, 9].

‘We have previously proposed code management techniques
[24, 16] and stack management scheme [19] for the local
memory of LLM processors, e.g. Cell processor. This work
would focus on managing heap data on local memories of
LLM processors, and fundamentally differs from the exist-
ing work on SPMs. The difference originates from the usage
models of SPMs in embedded systems and local memories in
LLM systems. Figure 3 illustrates the difference. It shows
that in the embedded systems e.g. the ARM architecture,
the SPM was present in addition to the regular cache hierar-
chy of the processor. Programs could execute correctly with-
out the use of SPM; they could however use SPM to improve
power and performance. On the other hand, in the Syner-
gistic Processing Element (SPE) of IBM Cell, all code/data
must go through the local memory. In other words, while the
problem of using SPMs in embedded systems is that of opti-
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Figure 3: In the ARM processor, the SPM was in
addition to the regular cache hierarchy, while in the
Cell/B.E., local store is an essential part of the mem-
ory hierarchy.

mization, the problem of using local memory in distributed
memory multi-core processors is to enable the execution of
application. As a result, previous SPM researches [25, 21, 9]
have focused on the question of “what to map” on the SPM.
The “what to map” is not even an option for LLM proces-
sors. Important questions are in using local memories are: i)
Given that the application code has to be manually changed
to make applications work, what will be a set of intuitive and
simple changes that must be made to the application pro-
gram to make this happen, and ii) These changes should
eventually result in less number of coarse-grain communica-
tions between the local memory and the global memory.

One way to manage heap data on the local memory of
each core in a LLM processor, e.g. the IBM Cell is by using
software cache [7]. However, there are several limitations
in managing heap data through software cache. We discuss
this approach and it’s limitations in greater detail in the
next section, Section 4, and then describe our approach to
meet this challenge in Section 5, and then finally experimen-
tally demonstrate the need and usefulness of our approach
in Section 7.

4. HEAP DATA MANAGEMENT THROUGH
SOFTWARE CACHE

The Software Cache is a semi-automatic way to manage
large amounts of data in a constant amount of SPM/local
memory space [5]. Software cache data structure is located
in the execution core with a programmer-defined size in the
global data segment. In order to use software cache, the
programmer has to first declare that they intend to man-
age certain data structure through software cache, and then
manually replace every access of that data by a read/write
from the software cache. Software cache access first checks
whether the data is in the cache data structure on the lo-
cal memory or not. If it is, then the program can directly
read/write the data from/to the cache, otherwise, a Direct
Memory Access (DMA), is performed to get the required
data from the global memory to the local memory, and then
it can be used. As new data comes in the cache data struc-
ture, older data may be evicted out to the main memory.

Figure 4 gives an example of how the heap data of the ap-
plication described in Figure 2 may be managed through
software cache. Note that there is no published scheme
to manage heap data using software cache, and we have
thought of this technique as one way to manage heap data
using software cache. First let us take a look at the execution



heapManage() {
while(1) {
spe_out_mbox_read

0: #define CACHE_NAME HEAP

0:

1:
2 1: typedef struct {
3 (speid, size, ...); 2: intid;

4:  ppuAdd = malloc(size); 3: float score;
5

6

7

8:

spe_in_mbox_write 4:} Student;
(speid, &ppuAdd...);
: 5: main() {
} 6: for (i=0; i<N; i++)}{

7: spu_write_out_mbox
9: main() { 8: (sizeof(student));
10: for (i=0; i<6; i++) { 9: student[i] =
11: pthread_create spu_read_in_mbox();
12: (..spe_context_run() ...);

13: '} 11: printf(“%d\n”,
12:  cache_rd(HEAP, student[i].id));
14: pthread_create 13: }
15: (...&heapManage...) 14:}
16: }

(a) PPU code (b) SPU code

Figure 4: Using software cache to manage heap data
in the Cell processor. Important observations: i)
The SPU must transmit all its memory management
functions to the PPU, ii) Need an extra memory
management thread on the PPU.

thread in Figure 4 (b). The first line shows the declaration
of the software cache named HEAP. More declaration state-
ments are needed, but are skipped here for clarity. Since the
number of students is unknown and can be large, the stu-
dent data structures must be allocated in the global memory.
However, in the original code, the student data structures
are malloc-ed in the execution thread. Therefore, we need a
way to communicate memory requirements from the execu-
tion threads/cores to the main thread/core. This requires a
change in the structure of the multi-threaded program. In
the example shown in Figure 4, the execution thread/core
(SPE) sends the size of malloc to the main thread/core
(PPE) through mailbox. The main thread/core (PPE) allo-
cates space for the student data structure in the global mem-
ory and sends its address back to the execution thread/core
(SPE). The execution core (SPE) uses this address to access
the student data structure that actually resides in the global
memory, through software cache. To enable this scheme,
we need a new thread on the main core (PPE), heapMan-
age, which waits for requests from the execution thread/core
(SPE), allocates the requested data structure in global mem-
ory heap, and sends back the allocated address to the ex-
ecution thread/core (SPE). Similar steps need to be taken
when free-ing up the allocated memory, but are skipped for
simplicity in the example. Some of the complexities in man-
aging heap data through software cache are:

1. The interface of the software cache requires that the
data should be allocated on main core, and the exe-
cution cores must access the data using the global ad-
dress. To use software cache, if an execution thread/core

allocates/frees certain variables (using malloc/free), then

these allocation requests must be transmitted to the
main core. Users have to program this communication
and allocation/free manually. In addition, to enable
that main core handle the execution thread memory

10: cache_wr({HEAP, student[i].id, i);

typedef struct node

{
int weight;
//struct node *link;
int link;

b

Figure 5: Need to change pointer to any other
non-pointer/non-structure type for use in software
cache, here we change it to int

management requests, users have to manually create
a new thread, which will wait and serve requests from
execution threads. Another interesting aspect of this
communication is that normally the execution cores
do the bidding of the main core, but to support this
heap management the main core has to serve execu-
tion core requests. This reversal of roles makes this
programming non-intuitive and complicated.

2. Software cache library only supports one data type in
a cache. Consider the example of a data structure
shown in Figure 5. The figure declares a node with a
weight and a pointer to a similar node. Software cache
does not support this pointer element, and it must be
renamed as any other non-structure and non-pointer
data type. This has to be done because the weight is
int, hence we change it to integer for the purpose that
the two element can use one cache instead of two dif-
ferent caches. This is un-natural for C programming,
and severely reduces readability.

3. Even if we know the data is in the cache, we still need
to use cache functions cache_rd and cache_wr to access
data from software cache. We can not avoid looking
up and therefore there is little scope for optimization
on the management overhead.

5. OUR APPROACH

5.1 Overview

The objective of our approach is to hide the additional
complexity in managing heap memory in a limited space on
the local memory in a library, that is intuitive to use, and
requires minimal changes in the program. In our technique,
programmers do not need to worry about the data type for
their heap variables. Figure 6 shows the pseudo-code of how
to use our heap management on the example shown in Figure
2. Note that the heap is declared and allocated/free-ed only
on the execution thread/core (SPE). User does not need to
write an extra thread on the main core (PPE) for heap data
management. In fact, the main thread does not change at
all. Programmers do not need to consider the redistribution
of heap data; they can continue to program as if each execu-
tion core has enough memory to manage (almost) unlimited
heap data. The only change the user needs to make is to
add the functions p2s and s2p before and after any access
to a heap variable. These modifications are a proper subset
of what is required to manage heap data through software
cache, do not change the structure of a multi-threaded pro-
gram, and are easy for the programmer. We expose the



[/*PPU heap region*/ main() {
int ppe_heap[MAX] ; for (i=0; i<N; i++){
student[i] =

main() {
for (i=0; i<6; i++) {
pthread_create
(...spe_context_run() ...);
} s2p(student]i]);

}
{a) PPU code

p2s(student[i]);
student[i].id = i;

(b) SPU code

Figure 6: Using our approach to manage heap data.
‘We redefine the malloc and free on the SPE to auto-
matically interact with the PPE. The only changes
required from the original multi-threaded program
is that the user has to add a call to p2s function be-
fore and s2p function after accessing a heap variable.

global address and local address to programmers, since we
do not need to perform checking every time as one disad-
vantage of using software cache.

5.2 Application Programming Interface (API)

The fundamental problem in Limited Local Memory (LLM)
architecture is that a program variable can have two ad-
dresses, depending on the memory in which it is located,
and that unlike in cache-based architectures, the program
must access the variables by correct address. The software
cache implementation hides the address of the variable in
the local memory. It exposes only the global address of the
variable and lets the programmer use only that. While this
keeps programming very much like that in cache-based archi-
tectures, it however requires address translation every single
time the variable is accessed, and results in high overhead.
Our heap management approach exposes the local address
of the variable to the programmer, so that the programmer
can use it directly, and not perform the address translation
every time. The function p2s(global address ga) brings the
program variable at global address ga to the local memory,
if it is not already there, and returns the local address, la of
the variable. The counterpart functionality is encapsulated
in the function s2p(local address la). In addition to these
two new implemented functions, the API of our heap data
management approach also redefines two existing functions.
If there is enough memory space in the heap region defined
in the local store, the malloc function returns a pointer to it,
otherwise it evicts older heap variable(s) to global memory
to make sufficient space for this heap variable, and returns
a pointer to it. One important point to note here is that
even though the malloc function may allocate space on the
local memory, it returns the global memory address of the
allocated heap variable. This is so that we always use the
global address to access the heap variables, including when
writing them in data structures, e.g., linked list. Arbitrary
sized linked lists cannot work with local addresses of heap
variables. The free function also takes in the global address
of the variable.

5.3 Global Memory Management

In order to support almost (unlimited) heap memory, we

malloc(sizeof(Student));

printf("%d\n”, student[i].id);

have to manage the heap data and the heap management
table in the main memory dynamically. This essentially re-
quires a separate memory management thread running on
the main core. Our implementation is similar to the one de-
scribed in Section 4, however, this separate thread is a part
of the library in our implementation, and the user does not
have to explicitly code it. The unit of data transfer between
the local memory and the global memory is called the granu-
larity of management. Heap data can be managed at various
granularities, right from word-level to the whole heap space
allocated in the local memory. Consider the SPU code in
Figure 2. The program allocates a student data structure,
and then accesses one field (student.id) of it. When the
program accesses any part of a allocated data structure, if
the whole data structure is brought into the local memory,
then the heap management is done at programmer defined
granularity. If only the exact field, e.g., the integer field of
student.id is brought into the local memory, then the heap
management is being done at word level of granularity. A
finer granularity of heap management is beneficial, if the al-
located data structures are large, and only a small part of
them are used in the algorithm. Finally, heap management is
performed at a coarse granularity by grouping the allocated
objects in a block, and if a part of any of them is accessed,
then a whole block of them are brought into the local mem-
ory. This is very effective when the allocated objects are
small. One important advantage of software implemented
heap management is that it can be tuned to the applica-
tion demands, rather than block size being fixed for a given
processor implementation in traditional cache architectures.

5.4 Local Heap Management

In order to manage unlimited heap data in a limited space
on the local memory, we need to keep a mapping of global
to local addresses. This data structure is called the heap
management table. The local memory space for heap man-
agement S is divided into a constant space required for heap
data H, and a constant space required for heap management
table, T', such that S = H +T. A malloc may add an en-
try to this table, and a free may result in the removal of an
entry in the heap management table. The table is accessed
at every call to p2s and s2p functions. Since this number
can be large, one is tempted to maintain this table in the
local memory. However, the size of the table can also grow
arbitrarily large. Therefore, we only maintain a part of this
table in the local memory. All the sizes, S, H, and T are
fixed at compile time. Every time when we want to add
an entry we check if there is place to write the new entry.
If yes, then we can just write the new entry, else we can
write the new entry after making space for a new entry by
evicting some of the older entries to the main memory. The
number of entries we evict at a time is the granularity of
management, and the heap table management can also be
performed at several granularities, from a single element to
the entire table size. We leave the exploration of the effect of
the granularity of the management of the heap management
table as a future concern. In this work we manage the heap
management table at the whole table size granularity. Thus
we evict the whole table, and bring a full table back into the
local memory, when needed.

6. OPTIMIZATION FOR EMBEDDED SYS-
TEMS



We implemented the heap data structures and the heap
management table in the main global memory using dy-
namic data structures. While this is clearly needed to sup-
port (almost) unlimited heap data, it comes with high per-
formance penalty. In order to do this, the malloc function
must eventually be mapped to insert operation in the dy-
namic data structure on the main core. Fundamentally
this requires some communication between the local and
the main thread, which can interpret messages from the lo-
cal thread and translate them as inserts in the data struc-
ture in the main thread. In the Cell processor this can be
achieved through another thread on the main processor and
a mailbox-based communication between the execution cores
and the main core. This communication is in addition to the
actual heap data that has to be transferred between the local
and the main core. Clearly this has high overheads.

In embedded systems, where it may be possible to de-
fine a upper bound on the heap memory needed, several
optimizations can be done to minimize the overheads. If
the maximum heap size (i.e., assuming no free’s) is known
at compile time, we can operate profiling to keep this size.
Then the heap data structure and heap management table
can be declared as static data structures, and we can allocate
all the heap variables contiguously in the pre-defined space.
When a heap data is needed, we can resolve the address in
the execution core so that a direct memory access (DMA)
can be directly used to transfer the data between the lo-
cal and the global memory. This completely eliminates the
need for the extra thread in the main core, and therefore
avoids all the performance penalty associated with the slow
mailbox-style communication. Furthermore, if possible, and
especially because the heap management table entries may
be much smaller than the heap data, the whole heap man-
agement table may be housed in the local memory, resulting
in additional performance optimization.

7. EXPERIMENTS
7.1 Experimental Setup

We conduct our experiments on IBM Cell processor in
Sony Play Station 3. The system runs a Linux Fedora 9 [1],
that gives us access to 6 of the 8 SPEs. We implement our
scheme on Mibench suite [14]. Note that all these bench-
marks are single threaded. We have modified them to per-
form all the input/output in the PPE, and perform all the
execution in the SPEs. We evaluate the effectiveness of our
heap management technique and optimization by comparing
the runtimes of (i) benchmarks without any heap manage-
ment (baseline) (ii) benchmarks with heap management to
support arbitrary heap data size and (iii) benchmarks with
heap size optimizations done. We use _mftb() for measuring
the runtime of PPE and spu_decrementer() for measuring
the runtime of SPE [4]. Since we compute the runtimes in
the presence of operating system, we run each experiment
10 times, and use the average runtime as our measure of
runtime. The benchmarks implemented are detailed in Ta-
ble 1. dijkstra, fft, fft_inv, and stringsearch are from the
Mibench suite [14], DF'S, MST and red black tree are some
other algorithms that are likely to be used in the applica-
tion domain intended for the Cell processor. The heap size
requirements for all the benchmarks is also noted in Table
1. Most of our experiments are on this configuration of one

Benchmarks Description Heap Size
(bytes)
Digkstra find shortest path 5040
1t fft algorithm 16416
fftinv fft_inv algorithm 16416
stringsearch | search strings 1096
DFS depth first search 16000
MST minimum spanning tree336
rbTree red black tree 2476
Table 1: We choose several benchmarks from

MiBench and elsewhere that use heap variables. The
table also shows the maximum heap data each ap-
plication needs.

PPE and only one SPE. However, in our last experiment on
scalability, we create multiple threads of same computation
on various number of cores.

7.2 Unrestricted Heap Size

To demonstrate the need of our technique, we execute the
rbTree benchmark with and without heap management. The
red black tree is a binary search benchmark with each node
in the tree data structure using 24 bytes. Each node is dy-
namically allocated and thus uses heap. In the benchmark ,
the code and global data occupy 15312 bytes in total. The
rest of the space is shared between the heap and the stack
data. Without any heap management, we can allocate only
ng = 6800 nodes (almost 160 KB) without any heap man-
agement, exceeding which causes the program to crash.

We run the benchmark using our scheme with nodes from
1 to 65536, which is nearly 10 times larger than that can be
run without heap management. We make an initial alloca-
tion in the local memory to manage heap data of 150 KB.
Hence no heap data DMA happens between the global mem-
ory and the local memory until the 150 KB region is full.
Furthermore, we set the number of entries in the heap man-
agement table as 256, which consumes about 4 KB. These
parameters are chosen for fair comparison of time with and
without heap management techniques.

The first observation from Figure 7 is that our technique
does not seem to have restrictions on the heap size of the
application. Both the heap management table, and memory
allocation in the global memory is dynamically managed.
The runtime increases when we use our management scheme,
because DMA needs to be performed for the management
of the heap data and heap management table. This is also
the reason why there is a leap after we allocate more than
6800 nodes. However, our technique guarantees that the
application can be run for any program parameters, without
any further changes by the user.

7.3 Impact of Heap Management Parameters

The runtime of applications running with our heap man-
agement are most affected by two parameters: First is the
amount of space in the local memory that is used for storing
heap data and the heap management table, and the second
is the granularity that we choose for heap data management.

The total memory space for heap (S) can be partitioned
as S = H+T. Let ng be the number of heap chunks that
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Figure 7: Without heap management, the program
will run with at most 6800 nodes; with management
we get a flexibility of using applications that require
larger heap.

can be allocated in the fixed heap region. Hence, the total
space for heap data should be H = ng * sy, where sy is
the size of one heap chunk. Also, T' = ng * sg, where ng
is the number of entries in the local store and sg is the size
of one entry. For a given S, there are several ways to par-
tition the memory into H and T, and how to partition the
memory is a topic of further investigation, but here, we as-
sume ng = ng, and thereby get a unique partition of S into
H and T'. For each benchmark, we compute the minimum
and the maximum heap size that is required. We execute
applications for the entire range of the heap sizes, and plot
the runtimes in Figure 8. The most clear message from this
graph is that the runtime of the application improves as we
increase the heap data region size on the local memory.
The second major effect on heap management is due to
the granularity of transactions between the local memory
and the global memory. We tune the granularity in multi-
ples of the memory blocks that are malloc-ed. For all our

Impact of heap space

1E+09
—4=—DF5
~100000000
w == dijkstra
E’ 10000000 - N
E 1000000 ——fft_inverse
o=
S 100000 —H—MST
By
] ) =0=rhTree
10000 e
stringsearch
1000

1

2!
4096
8192
16384

Heap Size (bytes)

Figure 8: Heap management with dynamic memory
allocation in global memory of PPE for heap objects
from local store of SPE, the heap region size for each
benchmark is set from the minimum size to the max-
imum size.
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Figure 9: Benchmarks with different granularities
and size for heap region is set to be 4096 bytes.
Granularity defines the number of heap variables we
consider for heap data DMA at a time.

Dynamic Static Average
Benchmarks management| management| Improvement|
(us) (us)
Digkstra 48167280 39317728 18.4%
It 2837261 2708675 4.5%
fftuinv 2923532 2788252 4.5%
stringsearch 130029 127650 1.8%
DFS 1000519 957732 4.3%
MST 9909 5615 43.3%
rbTree 98044 77376 21.1%

Table 2: Average performance enhancement for each
benchmark with different heap region size and dif-
ferent granularity is 14% . If a static buffer can be
assigned in the memory for heap management, it
eliminates the blocking calls caused due to dynamic
memory manager thread in the PPE.

benchmarks, we set heap size as 4096 bytes. From Figure
9, the effect of granularity is consistent across most bench-
marks, where, for a given heap space on the local memory,
the runtimes decrease as we increase the granularity.

7.4 Optimization for Embedded Applications

For extremely embedded applications, where we can get
the maximum heap size of the application or thread by pro-
filing, we can improve the application runtime by, first al-
locating sufficient space in the global memory so that there
will be no need of dynamically allocating memory in the
PPE. This helps, because dynamic memory allocation in
the PPE requires communication between the SPE and the
PPE through mailbox, which takes much more time than
a direct memory access. If there is enough memory in the
local store, then increasing the heap space in the local store
to as high as possible, and increasing the granularity also
helps. We exploit these techniques for each benchmark, and
note the initial, and improved runtime in Table 2. From
Table 2, we see that benchmarks have average performance
improvement by 14.0%.

7.5 Scalability of Heap Management

To illustrate the scalability of our technique, we execute



identical benchmark on different number of cores. We run all
benchmarks in the extreme case with dynamic memory man-
agement in the global memory of PPE (least size for heap
region in the local store for heap variables), which would
have worst performance.

In the Figure 10, we see that the runtime increases as we
scale the number of cores. This is because of the competition
of DMA request and mailbox use from different cores. There
is a gradual increase in runtime for all benchmarks as we
scale the number of cores. The increase is larger in case of
rbTree and MST. The reason for the increase is the “not-so-
frequent” localized read/write operations like the rest of the
benchmarks. There is a scattered heap access which causes
frequent access to the global memory increasing the latency
to serve each access with increasing number of cores.

Scalability of Heap Management
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Figure 10: Benchmarks with dynamic memory man-
agement in global memory of PPE, configuring with
different number of cores

8. SUMMARY AND FUTURE WORK

As we scale the number of cores, scaling the memory
architecture becomes the bottleneck. Limited local mem-
ory (LLM) architectures are a scalable memory architecture
platform that is now popular in modern and futuristic em-
bedded processors, e.g., the IBM Cell. Such processors fea-
ture a software controlled local memory in each core. If all
the application code and data fit into the local memory of
the core, the execution is extremely efficient; however when
this is not the case, the application code and data must be
managed between the local and the global memory by ex-
plicitly inserting DMA commands in the application. While
management is needed for all data, it is extremely important
to manage heap data since it can easily overwrite other data
and cause a failure. One possibility of managing heap data
is through the use of software cache, however, it requires
users to modify the thread code as well as the main thread
code, which not only can be counter-intuitive and laborious,
but also error-prone. We propose to automate heap memory
management by providing an simple to use programming in-
terface, which consists of redefinition of malloc and free, and
introducing two new functions p2s, and s2p, which have to
be added before and after every heap pointer access. Our

experiments on the Sony Playstation 3, that features the
IBM Cell demonstrates that i) our technique can support
any amount of heap data, ii) it is intuitive and easy to use,
and iii) it scales well with number of cores; in specific a
single memory management thread on the PPE can service
the needs of all the SPE memory requests. Finally we also
show that, in extremely embedded systems, the heap man-
agement can be optimized to further improve the runtime of
the applications by an average of 14%.

Our work foresees improvement in the following approaches.
Firstly , the number of table entries is the same as the num-
ber of heap objects in the Local Store of SPE. Actually,
given a total space for heap variables, we can partition it to
heap management table and heap variables to optimize the
total DMA transfer between global memory and local store.
Secondly, we can reduce the calls to p2s and s2p functions
before/after each heap variable by predicting if the variable
will need frequent access again at a later stage. This can be
improved further by doing a flow analysis using the control
flow graph. Finally, we can take the advantage of prefetch-
ing and double buffering technique to reduce the runtime
needed for the DMA.

As multi-core architectures with limited local memories
become popular, there is an increasing need to run not-so-
embedded applications on such architectures. We are ad-
dressing an important challenge of executing applications on
such architectures without modification of the natural way
of programming, with a goal to improve the programmabil-
ity.
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