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ABSTRACT
Connected Autonomous Vehicles have great potential to improve
automobile safety and traffic flow, especially in cooperative applica-
tions where perception data is shared between vehicles. However,
this cooperation must be secured from malicious intent and unin-
tentional errors that could cause accidents. Previous works typi-
cally address singular security or reliability issues for cooperative
driving in specific scenarios rather than the set of errors together.
In this paper, we propose CONClave – a tightly coupled authen-
tication, consensus, and trust scoring mechanism that provides
comprehensive security and reliability for cooperative perception
in autonomous vehicles. CONClave benefits from the pipelined na-
ture of the steps such that faults can be detected significantly faster
and with less compute. Overall, CONClave shows huge promise in
preventing security flaws, detecting even relatively minor sensing
faults, and increasing the robustness and accuracy of cooperative
perception in CAVs while adding minimal overhead.
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1 INTRODUCTION
Cooperative autonomous vehicle operation has the potential to
make roadways dramatically more safe and efficient [14]. Even if
all the technicalities of executing a cooperative maneuver can be
solved, there are still problems securing them from unauthorized
participants. Beyond that, there is the issue of preventing both
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malicious vehicles that intentionally disrupt a cooperative appli-
cation as well as preventing faulty vehicles that unintentionally
disrupt a cooperative application due to an error. For example, a
malicious vehicle could try to get ahead in the queue for a coop-
erative intersection by falsifying data. A fault, on the other hand,
could be an autonomous vehicle that has a sensor malfunction and
is sharing bad data with another vehicle that is blindly trusting the
data to see around a corner that is out of its sensor range. Even if
the exact reaction to these types of situations could be vehicle or
vendor specific, the overarching identification and prevention of
all disrupting vehicles, whether intentional or not, is paramount to
running successfully cooperation amongst autonomous vehicles.

Detecting malicious and unintentional faults requires multiple
steps, including authentication and verification of incoming data
[16]. However, without a trusted third party with its own sensors
involved in every vehicle area network, the scope increases to in-
clude consensus [12]. Existing state of the art methods typically
treat authentication, consensus, and trust scoring either separately
or together in a limited subset of cooperative scenarios. Guo et
al. propose a method to log events using blockchain, but their ap-
proach completely ignores the problem of keeping out unauthorized
participants and also does not have any mechanism to keep au-
thenticated users from making up events [8]. More recently, trust
scoring methods have been used in place of proof of work. For
instance, Mankodiya et al. [17] use a specialized ML bases trust
scoring that could take the place of proof of work but it is not
coupled with a consensus method and therefore cannot reap those
extra benefits. Bhattacharya et al. do tackle the authentication and
consensus problems at once, but too many assumptions are made
for the specific application, and therefore their approach will not
work for general cooperative scenarios [4].

This paper presents CONClave – an application-level network
protocol designed for sensor networks that require reliable and
trustworthy data in the context of Cooperative Autonomous Ve-
hicles (CAVs) and Cooperative Infrastructure Sensors (CISs). The
three primary contributions of CONClave are:

(1) A three party homomorphic hashing based authentication
process which includes the manufacturer, a third party au-
thority/government, and the vehicle itself. This inclusion
ensures that all entities (CAVs and CISs) that wish to par-
ticipate in the system must have the approval of both the
manufacturer and governmental stakeholders.
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(2) A BOSCO-based single-shot consensus protocol that works
in a dynamically changing geo-spatial vehicular networks
by limiting the latency and resource requirement of the con-
sensus protocol on non-discrete sensed values. Instead of
generating consensus on a common world-view, CONClave
generates consensus on the individual world-view provided
by each agent. This eliminates Byzantine attacks on the net-
work, leaving the common world-view generation work for
the next sensor fusion step.

(3) A perception trust scoring technique that reports an accuracy
score by utilizing sensor and recognition pipeline character-
ization data as the accuracy predictor, allowing for errors
to be detected down to the individual sensor level that are
not picked up by other state of the art methods. This trust
scoring technique is tightly coupled with the authentication
and consensus step so that it can operate in place of a proof
of work to improve real-time performance.

CONClave was tested against the state of the art trust scoring
method Trupercept [13] using fault and malicious injection on
a 1/10 scale model autonomous vehicles using a motion capture
system as ground truth. 1100 faults and malicious attacks were
injected over the course of 14 different scenarios while varying
the severity and number of the fault/injection. CONClave detected
96.7% of the 300 sensor extrinsic faults injected, 83.5% of the 300
software faults injected, 67.3% of the 300 malicious injections and
removals, and 100% of the 200 communication faults and malicious
injections that we subjected it to. On the other hand, the state of
the art method TruPercept only detected 29.6% of sensor extrinsic
faults, 34% of software faults, 32.6% of malicious injections and
removals, and 19.6% of the communication faults and malicious
injections. Overall, CONClave had a mean time to detection that
was 1.83x faster on average and 6.23x faster in the best case when
compared to TruPercept on the faults TruPercept could detect.

2 RELATEDWORK
Authentication: When distributed agents communicate in the
field, authentication is critical or the network is open to Sybil attacks
[7, 16]. Further complicating the issue, conditions often prevent
real-time communication with a central server, and local resource
constraints limit processing and storage [6]. Handy et al. assume
a more difficult task with no centralized authority or setup phase,
but participants establish keys with each new participant through
a process that does not consider the Sybil threat [18]. Wang et al.
rely on specialized hardware such as Physically Uncloneable Func-
tions (PUFs), an impractical choice for real-world deployments [22].
Similarly, approaches that rely on trusted execution environments
(TEEs) are susceptible to eventual compromise and key extraction
(e.g. via cold boot attacks [9] or side channels [15]). To address these
challenges, we use a three-way knowledge partitioning between a
government entity, manufacturer, and each individual participant.
To allow for reconstruction, we rely on an approach that allows for
intermediate hash composition using the homomorphic hash tree
described by Behrens et al. [2]. Though this produces larger hashes,
it allows for asymmetric reassembly of hashes, compartmentalizing
information, and preventing the compromise of any one party from
undermining the security of the authentication protocol [3].

Consensus: In a distributed environment, cooperative perception
algorithms can quickly succumb to byzantine faults [7]. Whether
due to communication dropout or malicious intent, faults will man-
ifest themselves as data corruption in the subsequent sensor fusion
step. A popular way to solve these issues is byzantine fault tolerant
consensus, however, consensus on non binary values is slow. Han
et al. solve this by eschewing the need for consensus on all sensor
values by bounding the problem to just nearby vehicle positions in
a platoon in addition to many other specializations [10]. However,
this approach will not work for general cooperative perception. To
address this challenge, our approach relies on a semi synchronous
distributed Byzantine tolerant consensus on the data each party
sent, rather than coming to consensus on the correctness of that
data. The correctness proof is left for the subsequent trust scoring
step in the pipeline. This technique keeps the consensus itself light-
weight and eschews the need for any proof of work by using the
trust score of the sensed values computed next as substitute.
Trust Scoring: In a cooperative perception environment, a minor
disagreement in sensor input caused by a sensor fault or malicious
actor could result a catastrophic incident and must be prevented
[11, 14]. Cavorsi et al. propose a method to apply a trust score
against robots sensing local traffic in their region that can detect
adversaries and lower the percentage error in the locally fused
traffic estimate [5]. However, it is not clear how this method can
be generally applied to cooperative perception nor does it take
into account the expected accuracy of the sensors involved. Hurl et
al. propose a cooperative perception specific trust scoring method
and test it using simulated data [13]. The trust score is applied to
a sensor fusion algorithm as a weight, and the result is a better
sensor fusion. Their method is limited to the case that the CAV
sensor configurations are uniform, containing both a camera and a
LIDAR as they use the camera confidence as the expected accuracy
of each sensed object and the LIDAR point count as a proxy for the
visibility. To address this, we create a trust scoring system that uses
a generalized error estimation technique for heterogeneous sensing
platforms borrowed from Andert et al. while consuming the results
of the previous consensus step to prevent byzantine faults [1].

3 OUR APPROACH
3.1 Overview

Figure 1: Overview of CONClave. Consensus and Authentica-
tion steps occur concurrently to reach a sensor data set that
all participant CAVs and CISs agree upon. The sensor data set
is then taken as input to our cooperative perception and trust
scoring steps resulting in trust scores for each participant.
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To achieve a secure consensus and trust scoring of CAVs and
other sensing infrastructure for reliable cooperative driving, CON-
Clave proposes a three-step process, which can be seen depicted at
a high level in figure 1. First, all participants are authenticated to
address the risk of Sybil attacks. We create a novel authentication
scheme that leverages homomorphic hashing, incorporates both
the manufacturer and a government entity, and allows participants
to authenticate each other in such a way that participants in a
consensus round don’t always need to have communication with
a trusted RSU. Next, we come to consensus on the sensor values
that all participants submit to the consensus round using Byzantine
fault tolerant consensus protocol such that faults in communication
can such as packet delay or dropped messages don’t manifest them-
selves later as error in the output [19]. We come to consensus on
the sensor values that each participant sends such that we reduce
the computation time by bounding the problem to be consensus on
the sensor values each participant sent using the Bosco consensus
protocol, which was modified to be semi-synchronous [20]. Finally,
a trust scoring technique is applied to the sensing input set that re-
sults from the consensus round, to verify the correctness of the data
each participant sent. Instead of using camera confidence values
as an accuracy indicator like Hurl et al. use, we use parameterized
sensor pipeline accuracy values from Andert et al. [1, 13]. This,
along with being closely coupled with a sensor fusion technique,
allows our trust scoring to be both fast and more accurate than the
previous state of the art. Our trust scoring not only improves the
accuracy of cooperative perception, it also serves as a replacement
of the proof of work for our consensus step. All of this combines
to prevent most known attack vectors and errors that can occur in
a cooperative perception environment. Next, we explain the three
steps of CONClave and its working in more detail.

3.2 Three Party Authentication
A high level depiction of our authentication setup process can be
seen in algorithm 1. To initialize, both the law enforcement/governmental
agency and manufacturer generate a secret key known only to
themselves denoted as 𝑆𝑔 and 𝑆𝑚 respectively. The manufacturer
generates an asymmetric keypair 𝑃𝑐 , 𝑆𝑐 and stores it locally on the
vehicle; crucially, we do not require any central database of these
keys (line 2). In an interactive process, the two players exchange the
CAV/CIS’s identity and generate a challenge Chal𝑐 and response
hash Resp𝑐 which is also stored locally (line 3-5). This inclusion
ensures that all CAVs/CISs which wish to participate in the system
have the approval of both stakeholders. Note that neither party
exchanges their secret keys 𝑆𝑚 or 𝑆𝑔 , instead using hashed versions
Chal𝑐 and Resp𝑐 to prevent inappropriate use.

Next, both stakeholders must periodically go through an inter-
active process to refresh what we call as a round signature Sig𝑟 – a
validity mechanic that allows for either party to exit from partic-
ipation (lines 8-13). Stakeholders may tune the frequency of this
process to increase or decrease the duration in which CAVs/CISs
may operate asynchronously. Once generated, these signatures Sig𝑟
are securely distributed to each RSU. As vehicles travel within range
of an RSU, they may choose to issue a renewal request to that RSU
(line 7). These messages are encrypted with a CAV/CIS’s private
key, and the corresponding public key is transmitted along with

Algorithm 1: Three party authentication setup.
Data: ego, mnf, gov, nearbyRSU, expirationTime

1 if ego->keyPair == false then
2 ego.𝑃𝑐 , ego.𝑆𝑐 , ego.𝑈𝑈 𝐼𝐷𝑐 = genKeyPair();
3 ego.Chal𝑐 = gov.genChal(ego.𝑈𝑈 𝐼𝐷𝑐 , mnf.𝑆𝑚 , gov.𝑆𝑔);
4 ego.Resp𝑐 = gov.genResp(ego.𝑈𝑈 𝐼𝐷𝑐 , mnf.𝑆𝑚 , gov.𝑆𝑔);
5 ego.keyPair = true;
6 if ego.roundToken.age() >= .9 * expirationTime then
7 if nearbyRSU.withinRange(ego.position) then
8 if roundNum.age() > expirationTime then
9 roundNum++;

10 𝑈𝑈 𝐼𝐷𝑟 = genUUID();
11 𝑠𝑖𝑔𝑟 = genRoundSig(roundNum,𝑈𝑈 𝐼𝐷𝑟 ,

mnf.𝑆𝑚 , gov.𝑆𝑔);
12 transmitAllRSUsSecure(roundNum, 𝑠𝑖𝑔𝑟 ,

𝑈𝑈 𝐼𝐷𝑟 );
13 ego.𝑠𝑖𝑔𝑟 = transmitAllEgosSecure(𝑠𝑖𝑔𝑟 );
14 ego.Chal𝑡 = nearbyRSU.genChal(ego.𝑈𝑈 𝐼𝐷𝑐 ,

ego.Chal𝑐 , 𝑠𝑖𝑔𝑟 );
15 ego.Resp𝑡 = nearbyRSU.genResp(ego.𝑈𝑈 𝐼𝐷𝑐 ,

ego.Chal𝑐 , 𝑠𝑖𝑔𝑟 );

the request to provide authenticity but not secrecy. Nonces prevent
replay attacks. The RSU may optionally check the CAV/CIS’s iden-
tifier against a central database to ensure compliance, such as valid
licensing or inspection requirements. Once the RSU validates the
request, ephemeral challenge and response tokens Chal𝑡 and Resp𝑡
are generated and encrypted with the CAV/CIS’s public key before
sending them back (lines 14, 15). This ensures that eavesdroppers
may not re-use a CAV/CIS’s token, as they lack the corresponding
private key. Depending on how often rounds change, it may be
desirable to store the subsequent tokens to ensure that validation
can take place between CAVs/CISs whose round tokens differ in
sequence by one.

3.3 Single-shot Consensus
For consensus rounds, we utilize a set area around an intersection
with a constant trigger. All CAVs/CISs within range attempt to
participate in the round and local IPs are known ahead of time.
When establishing a relationship between CAVs/CISs during a given
consensus step, each CAV/CIS provides additional metadata with
their broadcast to allow for authentication. Each CAV/CIS generates
this metadataChal𝑐1, and shares it alongwith a hashed version of its
ID 𝐼𝐷𝑐1 and its public key 𝑃𝑐1. Recipients check the received values
using their own local tokens 𝐼𝐷𝑐2 and Resp𝑡2 to ensure compliance,
and if valid, they temporarily store the public keys to allow for
secure communication during the consensus step.

Next, participants accumulate the sensing messages from all
other participants. This stops when a message is received from
every known participant or the sensing transmission timeout is
reached. Each participant sends out the accumulated set of sensing
messages, received with valid authentication, and accumulates the
same message from other participants. This stops when a message
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is received from every known participant or the aggregate trans-
mission timeout is reached. Finally, each participant decides their
vote according to the BOSCO algorithm and sends the result to
all other participants, as well as nearby trusted RSUs for secure
storage [20].

3.4 Accurate Trust Scoring

Algorithm 2: Trust Scoring.
Data: trustScores, sensorData, tracks, participants
Result: trustScores, tracks

1 tracks.predictEKF();
2 tracks.JPDAFAssociation(sensorData);
3 prelimResult = tracks.updateUKF(sensorData, trustScores);
4 exists = tallyExistenceVotes(sensorData, participants);
5 sensorDataTrun = remNonByzantine(exists, sensorData);
6 trustScores = calcSSDS(prelimResult, sensorDataTrun);
7 trustScores = enforceMinimums(trustScores);
8 tracks = tracks.updateUKF(sensorDataTrun, trustScores);

Our trust scoring method is closely coupled with a UKF based
sensor fusion method, depicted in algorithm 2. It can be ran by all
participants separately or alternatively ran on a nearby trusted RSU
and distributed out. The first step of this is matching observations
to tracks using a JPDA Filter while taking into account expected
error and bounding box size [21]. We utilize the Unscented Kalman
Filter (UKF) approach that Andert et al. use for fusion (lines 1-3)
[1]. Utilization of observations that are coming from each vehicle is
conditional upon the existing trust score, or sensing standard devia-
tion score (𝑆𝐷𝑆). If 𝑆𝐷𝑆 exceeds a certain value 𝑆𝐷𝑆𝑚𝑎𝑥 , the sensor
platform is considered not trustworthy and none of its observations
nor its own position will be included in this global fusion.

CONClave looks at two factors when calculating the trust score:
i) Was an object supposed to be detected or not?, and ii) Was an
object detected with the accuracy it was expected to be detected
with? In order to evaluate the first, we determine if an object should
have been seen or not with respect to other sensor platforms using
a Byzantine tolerant voting scheme (line 4,5). We iterate through
all the tracks and mark the track as existing if the object is within
the FOV and range of a sensor as well as the visibility percentage
threshold. Our method maintains byzantine tolerance by requiring
that a majority of all participants should see an object according to
their FOV and modeled obstructions to vote whether a track exists
or not. For the second item, we utilize the estimated accuracy of
the local fusion output of each vehicle as defined by Andert et al.
[1], to determine the expected accuracy of each detection.

All participants within the sensor network need to have a mini-
mum accuracy boundary, otherwise a possible attack vector would
be to report its sensors as incredibly inaccurate. For sensing pipelines,
we enforce a minimum sensing range requirement, a minimum FOV
requirement, and a minimum sensor error magnitude requirement
within this range and FOV. For localization pipelines, we enforce a
minimum error magnitude requirement. If any participant’s sensed
values exceed these thresholds, the participant values will not be
considered in the trust scoring and should be sent for repairs, even
though it passes the authentication and consensus rounds.

Using the matching results from the JPDA filter and bounding
box step as well as the fused positions outputted by the UKF for
observability consensus, we have the necessary ingredients to per-
form a trust scoring of the reported accuracy of the sensor platform
versus the fused position from the consensus round (line 6). If a
track is reported as exists, the reported accuracy of the detected
value of the CAV / CIS is compared with that contained in the fused
output of the UKF. For the sensed values from each CAV/CIS that
were matched to the track, the reported position < 𝑥,𝑦 > (or 𝑧𝑘 )
is subtracted from the estimated position produced by the UKF (or
𝑥𝑘 |𝑘 ), shown in the numerator of equation 1. 𝑃𝑘 |𝑘 returned by the
UKF encompasses the expected error of the measurements from all
sensors involved in the local fusion as well as the estimation from
the UKF itself [1]. We then normalize by the expected error E(𝜇𝛼

𝜃
)

which is contained in Σ𝛼
𝜃
and can be extracted using the eigenval-

ues, shown in the denominator of equation 1. The result is why this
is called the standard deviation score (𝑆𝐷𝑆) as this is simply the
standard deviation of the measured error returned by the global
fusion w.r.t the value of the expected error from the measurement
covariance in the local fusion of the sensor platform.

In order to keep a sensor from reporting itself as accurate in a
vacuum, we enforce a rule of three – meaning at least three sen-
sors must be matched and detecting the same track for a standard
deviation frame to be added to the SDS revolving buffer for that
object (line 7). This is in addition to the byzantine tolerant con-
sensus on the existence or lack of existence of the track from all
sensors. Furthermore, to keep low confidence tracks from being
levied against a sensor, we enforce the second piece of the rule of
three which dictates that the hypotenuse of the accuracy reported
by the 𝑟𝑜𝑢𝑛𝑑𝐹𝑢𝑠𝑖𝑜𝑛 track (or 𝑃𝑘 |𝑘 ) must be three times as accurate
as the hypotenuse of the accuracy reported by the sensor itself
(or Σ𝛼

𝜃
). If all of these conditions hold true, then it is prudent that

the sensor 𝛼 is attributed with the 𝑆𝐷𝑆 by placing it in the last
position of the revolving buffer, which is averaged to create the
overall trust score. The rule of three applies to missed detection,
three sensors must agree the object is there along with the consen-
sus that the track exists. If these constraints are met, any sensor
platform that should detect that object will have a missed detection
frame added. The value 𝜌 is then added in place of the 𝑆𝐷𝑆 frame
for the sensor platform that did not detect the track. 𝜌 was set to
3 ∗𝑚𝑖𝑛_𝑆𝑒𝑛𝑠𝑜𝑟_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦.

𝑆𝐷𝑆𝛼
𝜃
=

√︃
(𝜆↓0 (𝜇

𝛼
𝜃
) − 𝜆

↓
0 (𝑥𝑘 |𝑘𝜃 ))2 + (𝜆↓1 (𝜇

𝛼
𝜃
) − 𝜆

↓
1 (𝑥𝑘 |𝑘𝜃 ))2√︃

(𝜆↓0 (Σ
𝛼
𝜃
) − 𝜆

↓
0 (𝑃𝑘 |𝑘𝜃 ))2 + (𝜆↓1 (Σ

𝛼
𝜃
) − 𝜆

↓
1 (𝑃𝑘 |𝑘𝜃 ))2

(1)

For each participant in the round, a new SDS score is calculated
in equation 1. This score is then added to the 𝑆𝑆𝐷𝑆 buffer (line 6).
The set of 𝑆𝑆𝐷𝑆 scored for each participant constitutes their trust
score. This value is shared globally among RSUs and is updated
after each consensus round ends. Finally, the tracks are updated
using the curated sensor set and new trust scores (line 8).

4 EXPERIMENTAL SETUP
For testing, we utilize 1/10 scale autonomous vehicle replicas. Our
setup consists of four scale CAVs with a front facing 160 degree
FOV camera and a 360 degree FOV single channel LIDAR and two
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Error#: Error Name Description
E1: Camera Shift For CAV I, Camera extrinisics skewed N degrees.
E2: LIDAR Shift For CAV I, LIDAR extrinisics skewed N degrees.

E3: Cam & LIDAR Shift For CAV I, Camera and LIDAR extrinsics
are skewed by the same N degrees.

E4: Random Data Loss For CAV I, with probability N, each
detection the vehicle has may be removed.

E5: Malicious Removal For CAV I, with probability N, the CAV
removes vehicles crossing the intersection.

E6: Malicious Insertion For CAV I, with probability N, the CAV
injects vehicle detections into the intersection.

E7: Localization For CAV I, the localization error that CAV I
is experiencing will be increased by N percent.

E8: Local Sensor Fusion For CAV I, at the local fusion level the
covariance of the LIDAR is decreased by N%.

E9: Global Sensor Fusion For CAV I, at the global fusion level the
covariance of the CAV I is decreased by N%.

E10: Unauthorized User CAV I has an invalid authentication challenge.
E11: Expired Round Token CAV I has a round token that has expired.
E12: Byzantine Fault CAV I drops a packet when sending a message.

E13: Replay Attack CAV I replays data another participant
sent one round before.

E14: Spoofed Localization CAV I sends the wrong location for itself.

Table 1: Descriptions and examples of the 14 error injection
tests we performed against CONClave to test resilience.

mounted CISs with a 160 degree FOV camera. Figure 2 shows our
setup with four CAVs.

Using data collected from a set of 10, ten-minute-long tests for
each physical configuration, we perform error injection with the 14
scenarios shown in Table 1. The simplest scenarios are sensor errors
that can be easily caused in any autonomous vehicle by jarring a
sensor. For E1-E3, the same data from the sensors are used, but the
extrinsics of the sensors will be skewed by 𝑁 degrees resulting in
a shift in the data from that sensor. The next category of error is
malicious error in which we purposely inject or remove detection
with probability 𝑁 . Next, we have software errors that manifest
itself as a bad weighting in the sensor fusion where we change
weightings by some 𝑁 percent. Finally, we have communication
faults and attacks where we cause 𝑁 vehicles in the simulation to
experience a communication error. The tests are run for a random
amount of time from 120 seconds through 540 seconds with normal
operation before we begin injecting the specific fault. If the trust
score for a vehicle becomes 1.2x of the baseline within 60 seconds
after the fault is injected, we consider the fault to be caught and
record the MTTD. Each fault injection was run 10 times at each
step for a total of 1100 tests.

Figure 2: Four one-tenth scale CAVs with IMX160 camera,
Slamware M1M1 LIDAR, and Nvidia Jetson Nano for on-
board processing along with two one-tenth scale CIS traffic
cameras using Jetson Nano and IMX160 camera test setup.

5 RESULTS
5.1 - CONClave quickly detects nearly all extrinsics errors
E1-E3 where the sensors experience a physical sensor shift of N
degrees are shown in figure 3a. These tests showcase CONClave’s
ability to pick out relatively minor errors within the cooperative
perception environment. Errors as minor as a two-degree camera
shift, one-degree LIDAR shift, or one-degree shift combination are
caught. CONClave detects an impressive 96.7% of the 300 tests.
TruPercept is only able to catch large magnitude errors, such as a
ten-degree LIDAR shift or a four-degree or more camera and LIDAR
shift resulting in a detection rate of 29.6% of the 300 tests. TruPercept
does not have a suitable predictor that works when the IOU match
is still high, but the error variance is higher than it should be,
instead relying on the confidence of the camera as a predictor [13].
Therefore, TruPercept only detects these sensor extrinsic errors
when they result in the IOU of a track dropping below the 50%
threshold, which causes there to no longer be a match to the rest of
the CAV/CIS report and finally the offending CAV/CIS is punished
for not detecting the object entirely. Conversely, CONClave has
a concept for how much variance it expects in sensing error and
as that variance starts to leave the expected limits, the vehicle
trust score is punished for that. This variance threshold results
in quick detection of minor extrinsics errors which are missed by
TruPercept. RMSE of Conlcave in all tests for E1-E3 is 6.3% higher
than TruPercept and 10.3% better than without trust scoring.
5.2 - CONClave detects malicious errors faster than TruPer-
cept E4-E6 consist of accidental track removal as well as malicious
injection and removal, seen in figure 3b. These tests are similar to
what TruPercept was designed for, with the caveat that we only
have a single vehicle experiencing the error, whereas TruPercept
had all vehicles experiencing the same probability of error [13].
TruPercept performs well in this case, detecting 34% of 300 tests.
CONClave beats TruPercept, detecting 67.3% of the 300 tests. This
is because a malicious actor that is injecting fake vehicles into their
data will not purposely report a low camera confidence. Therefore,
in the second test, TruPercept relies completely on the IOU mis-
match of detections to identify a problem where CONClave can
detect higher variances and report errors sooner. For the RMSE
case, we can see that both CONClave and TruPercept respond to E4,
so CONClave is only 1.9% better than TruPercept and 5. 1% better
than without trust scoring. Although these error injections have a
high probability, they are filtered out by local sensor fusion, so the
RMSE effect is less than E1-E3.
5.3 - CONClave detects more software errors, and faster
E7-E9 look at common cases of mis-weighting. Overall Trupercept
detected 32.6% of the 300 tests while CONClave was able to detect
83.5%, which can be seen in figure 3c. For the E7 localization error
and E8 local sensor fusion misweight, we can see that CONClave
detects it but Trupercept misses it due to CONClave being tuned
to detect variance while Trupercpet is not. E9 on the other hand is
detected by both methods with CONClave just slightly edging ahead
in detection speed. Again, this is due to the nature of CONClave
being able to detect larger and smaller variance than expected and
report the errors quickly. Meanwhile TruPercept has to wait until
detections start to mismatch IOU wise before it will start to detect
the errors. Meanwhile, TruPercept takes longer to respond and
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(a) Mean time to detection (MTTD) for sensor extrinsics errors. CON-
Clave detects as little as a two degree camera shift (E1) or one degree
shift in the LIDAR (E2, E3) while TruPercept fails to detect all but E3.
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(b) MTTD of malicious and accidental injection/removals of tracks.
CONClave detects most injection/removals on par or better than Tru-
Percept.
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(c) Mean time to detection (MTTD) of localization errors. TruPercept
fails to detect most of these while Conlcave succeeds.
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E12: Byzantine Fault (Conclave) E:13 Replay Attack (Conclave)

E:14 Spoofed Localization (Conclave) E:14 Spoofed Localization (TruPercept)

(d) CONClave detects almost all of these within the first frame fast
while TruPercept fails at all except localization spoofing. Note E10-E13
are not plotted for TruPercept as it does not detect them.

therefore has a worse result. RMSE of CONClave was 3.9% better
than Trupercept and 5.8% better than no trust scoring.
5.4 - CONClave detects many communication faults and at-
tacks E10 - E14 showcase tolerance to a variety of errors and attack
vectors that are not typically captured by a trust scoring system
alone. This is apparent when looking at figure 3d on the bottom
right where only one of the errors, E14, is detected by Trupercept.
Trupercept detected 19.6% of communication faults and attacks
while CONClave detected a perfect 100% of the 200 tests. Further-
more, CONClave detected E10-13 in less than two seconds, or two
consensus rounds. We did not compare RMSE because Trupercept
as well as the performance of the baseline technique, was rendered
inoperable in the case of E10, E11, and E13 beyond recovery.

6 CONCLUSION
In this paperwe present amethod to secure cooperatively perception-
based applications for connected autonomous vehicles that we call
CONClave. CONClave consists of three parts, an authentication
method, a consensus round, and a trust scoring method that are
pipelined such that it can be run in real time. CONClave was able to
detect more categories of faults and errors, including both malicious
and unintentional errors, while being faster than the state of the
art method TruPercept. In future work, we would like to expand
CONClave to work for all cooperative driving scenarios, including
those that need path plan trust scoring.
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