
Crossroads - A Time-Sensitive Autonomous Intersection Management Technique

by

Edward Paul Andert III

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved January 2017 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Georgios Fainekos
Hani Ben Amor

ARIZONA STATE UNIVERSITY

May 2017

ABSTRACT

For autonomous vehicles, intelligent autonomous intersection management will be re-

quired for safe and efficient operation of the intersection. In order to achieve safe

operation despite uncertainty in vehicle’s trajectory, intersection management tech-

niques must consider a safety buffer around the vehicles. For truly safe operation, the

safety buffer should also account for the network and computational delay caused by

communication with the IM (Intersection Manager) to request entry and receive a re-

ply. However, modeling the worst-case computation and network delay as additional

safety buffer degrades the throughput of the intersection. To avoid this problem,

AIMDresner and Stone (2004) - a popular state-of-the-art IM adopts a query-based

approach, in which the IM only provides a yes/no answer to vehicle’s queries of speed

and arrival time. Although this solution does not degrade the position uncertainty,

but it increases the network traffic, the amount of computation on both the car and

the IM, and ultimately results in poor intersection throughput. We present Cross-

roads - a time-sensitive programming method to program the interface of a vehicle

and IM, without requiring additional buffer to account for the effect of network and

computational delay, and enables efficient intersection management. Our results on

1/10 scale model of intersection using TRAXXAS RC cars demonstrate that time-

sensitive programming based approach Crossroads obviates the need for large buffers

to accommodate for the network and computation delay, and can reduce the average

wait time for the vehicles at a single-lane intersection by 24%. To compare Crossroads

with previous approaches, we perform extensive Matlab simulations, and find that

Crossroads achieves on average 1.62X higher throughput than simple VT-IM with

extra safety buffers, and 1.36X better than AIM.

i

Dedicated to my parents, for without whom I would never have made it.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

2 SETUP TO EVALUATE IM . 5

3 SAFETY BUFFER CALCULATION . 7

3.1 Estimating Sensing Error . 7

3.2 Estimating Time Synchronization Error . 9

4 TIMING PROBLEMS IN VT-IM . 10

5 RELATED WORKS . 13

5.1 Velocity Transaction Based IMs . 13

5.2 Query-Based IMs . 14

6 OUR TIME-SENSITIVE TECHNIQUE . 16

7 EMPIRICAL EVIDENCE. 20

7.1 Time-sensitive Programming Enables Efficient IM 20

7.2 Crossroad Scales Well . 21

REFERENCES . 24

iii

LIST OF TABLES

Table Page

iv

LIST OF FIGURES

Figure Page

1.1 Five vehicles in a real implementation. Top speed 3.0 m/s. Intersection

lines are overlayed after the test. 4

2.1 Vehicle modeled with lateral, longitudinal error including round-trip

delay. 6

3.1 Expected velocity versus actual velocity due to control algorithm er-

rors, and sensor errors. 8

4.1 Round-Trip delay and computational delay cause late command delivery 11

6.1 Vehicles receiving command from IM with different round trip delays . . 16

6.2 Example of a vehicle trajectory based on max acceleration 17

7.1 Average wait time comparison for vehicles in 4 different cases of our

physical implementation. 21

7.2 Throughput and Computation time for different input flow rates 23

v

Chapter 1

INTRODUCTION

As cars become autonomous, intersections are no longer constrained by the humans

that are currently driving and instead, automated Intersection Managers (IMs) 1 can

make intersections safer and more efficient. IM interacts with the vehicles as they

approach the intersection to find a safe and efficient way to operate the intersection.

There are 2 main ways to design the interface between the vehicles and the IM.

The first is the most intuitive one, which we call Veloctiy Transaction IM (or VT-

IM) – in which the approaching vehicles announce their arrival to the IM, and the

IM provides them with a velocity to follow, that will not only ensure safe but also

efficient operation of the intersection. To guarantee the safety of vehicles in this and as

a matter of fact, any other intersection, a safety buffer must be considered around the

vehicle which accounts for the uncertainty in the position and velocity of the vehicle.

The uncertainty in the position and speed of the vehicle can be due to various reasons,

including the errors in various sensors and actuators, the data fusion algorithms, and

even due to the clock synchronization drift between the vehicle and the IM. However,

for a truly safe operation in an VT-IM, the safety buffer calculation should also take

into account the network and computation delay related to the interaction between the

vehicle and the IM. Here the network delay is the variable lag in delivering information

to the intersection manager and then back to the vehicle, and computational delay

is the time it takes for the IM to compute the correct response to send back to the

vehicle. Together network and computation delay compose RTD (Round Trip Delay).

1In this paper we use the acronym IM for both intersection manager and intersection management.
The correct word will be clear from the context.

1

Neglecting RTD makes VT-IM scheduling methods vulnerable to uncertainties and

may lead to accidents. The safety buffer should correspond to the worst-case RTD.

To test the effects of error and worst-case RTD, we implement a 1/10 scale in-

tersection model using 8 Traxxas RC cars setup for autonomous driving with a top

speed of 3.0 m/s and a length and width of 568mm by 298mm respectively. The cars

communicate with the IM using a NRF24L01+, 2.4GHz serial network adapters. For

our car intersection setup, the worst case safety buffer due to the control and clock

error was about 78mm, while the buffer due to the RTD was about 450mm. Clearly

the buffer due to RTD is quite significant! In real cars, we expect the safety buffer due

to sensor and actuator error to be smaller, since they use higher quality components,

but the safety buffer due to RTD can be much larger due to longer communication

distance of the vehicle with the IM, and much higher traffic at intersections. Adding

such large safety buffers, although necessary, severely degrades the performance of

the intersections.

One way to avoid having this large safety buffer due to RTD is to use a Query-

Based IM (QB-IM) design. This approach is quite popular, and is used in AIM

projectDresner and Stone (2004, 2008). In this, the vehicle approaches the intersection

at a constant speed, and sends a speed query to the IM, and IM only replies with a

yes/no answer. If the answer is yes, the vehicle can continue moving with the speed,

and if the answer is no, the car slows down to a lower speed, and makes a request

again. Although QB-IM approach does not incur error in the position of the vehicle

due to RTD, and therefore extra safety buffer is not required, however, in such an IM

design there is not much scope for the IM to optimize the traffic at the intersection.

In particular, the QB-IM design cannot solve an optimization problem and send it’s

result to the vehicles – it can only give a yes/no answer and achieve safety. Ultimately,

a QB-IM will increase the network traffic, the amount of computation on both the

2

car and the IM – all finally result in poor intersection throughput.

To solve this RTD related extra safety buffer problem correctly, we present our

approach: Crossroads - a time-sensitive programming method to program the TT-IM,

without requiring the additional buffer due to RTD. Crossroads solves the extra safety

buffer problem by fixing the action time of the new speed received by the vehicle, so

that the position of the vehicle becomes deterministic. We use 1/10 scale models

and design several traffic scenarios to test the two IM techniques, the vT-IM, which

requires extra safety buffers, and Crossroads (that does not require the extra safety

buffers). We find that in Crossroad, the average and worst case slow downs of the car

16% less 24% respectively. We also implemented all the three IMs (the simple VT-Im,

Crossroads, and AIM) in Matlab to study the scalability of our approach. We run the

intersection for randomly generated cars for different input flow rates. We find that

at low input rates, all the techniques perform almost the same, however, as input

rate increases, the throughput of VT-IM drops sharply. QB-IM works better, but

Crossroads scales very well. On average over all input flows, Crossroads has 1.62X

better throughput (number of cars per second
average delay per car

) than VTI-IM, and 1.36X better than AIM.

The performance overhead and network traffic of Crossroads and VT-IM is up to 20X

lower than AIM due to it’s query-based approach.

3

Figure 1.1: Five vehicles in a real implementation. Top speed 3.0 m/s. Intersection

lines are overlayed after the test.

4

Chapter 2

SETUP TO EVALUATE IM

Most Intersection Management (IM) techniques have been evaluated on simulators,

therefore researchers did not encounter timing and error related problems. In order

to test the effectiveness of IM policies on a physical intersection, we created a 1/10

scale model. As shown in figure 1.1, we have designed a 4-way intersection with one

lane per road. The size of the intersection is 1.2 × 1.2m2 and the vehicle length and

width are 0.568m and 0.296m respectively. Each car will start communicating with

the intersection manager when crossing a designated transmission line. The distance

between intersection and designated transmission line is 3m. The maximum velocity

of the cars is limited to 3m/s.

We used RWD (rear wheel drive) Traxxas Slash RC as the chassis. The stock

motors were exchanged with smaller motors with built in quadrature encoders for

fine-grain feedback control. Arduino Mega 2560s were used as the central control

unit of the vehicles. Arduino Nanos were utilized to monitor quadrature encoders for

localization of the vehicles. Bosch BNO055 9DOF sensor fusion IMUs were used for

steering feedback. For wireless communication, NRF24L01+, 2.4GHz serial network

adapters were utilized. Our setup is similar to Fok et al. (2012).

The vehicle interaction with the IM is implemented broadly as a state machine

with 4 states: i) Arriving state: The vehicle is in this state before it reaches the

transmission line. ii) Sync state: Once the vehicle reaches the transmission line, it

registers with the IM, and sends a sync request to the IM. The IM sends back the

time synchronization data (Based on NTP) ?. iii) Request state: Once the time

sync is achieved, the vehicle transmits a packet of data to the intersection manager

5

requesting to make an intersection crossing. After processing the requests ahead in

a FIFO queue, the IM computes the response for the vehicle and sends the response

(e.g., proceed at a particular speed). vi) Follow state: Once the vehicle receives the

plan from IM, the vehicle then follows the plan, and when it crosses the intersection,

the vehicle sends an exit timestamp to notify the IM, and goes back to the Arriving

state for the next intersection. The exit timestamp allows us to track wait time of

each vehicle.

Different IMs are implemented and run on a laptop with 10 GB memory, Core

i7 -3517u @1.9/2.4 GHz CPU and Windows 8.1 64-bit OS. The IMs are written in

Matlab R2016. The communication between the vehicles and the IM is an exchange

of about 44-bytes of data for each vehicle. In some rare cases, when a re-transmit is

needed because of communication timeout, resulting, there is an overhead of 24 bytes

per re-transmit.

𝑬𝑳𝒂𝒕

𝑬𝑳𝒂𝒕

𝑬𝑳𝒐𝒏𝒈
𝑬𝑳𝒐𝒏𝒈𝑳

𝑾

Figure 2.1: Vehicle modeled with lateral, longitudinal error including round-trip delay.

6

Chapter 3

SAFETY BUFFER CALCULATION

In any real system (not simulation), there are always uncertainties/inaccuracies

in identifying the exact state of the system – in our case, the position and velocity

of the vehicles. The uncertainty in the state of the system can be due to several

reasons, including the sensor errors (in our case, the position and speed sensors),

the errors due to state estimation algorithm used (for example, if a GPS and IMU

are used to estimate the position and the velocity of the vehicle, then the sensor

fusion algorithm can affect the accuracy of the position and velocity), and even due

to the difference in the clocks of the different components of the system (in our case,

the synchronization error between the IM and the vehicle). In order to achieve safe

operation of the intersection, a safety buffer must be modeled around the vehicles.

The safety buffer essentially implies that the vehicle can be anywhere within the

buffer and the movement of the vehicles must be planned/implemented such that the

safety buffers do not overlap at any moment in time. Next we show how we estimate

this safety buffer for our vehicles.

3.1 Estimating Sensing Error

Vehicle positioning is based on acquired measurements from sensors, so an IM

design must take into account the error propagated from GPS, encoder, etc. It should

be noted that an encoder error would affect the vehicle longitudinally, whereas GPS

error would affect a vehicle both laterally and longitudinally. Figure 2.1 depicts both

cases. Although it may be possible to estimate the size of safety buffer around the

vehicles using the error numbers from the data sheets of the sensors, it is still hard to

7

Figure 3.1: Expected velocity versus actual velocity due to control algorithm errors,

and sensor errors.

estimate the affect of the data fusion and control algorithms on the buffer. Therefore,

we devise an experiment to estimate the error in the overall position and velocity of

the car, and use that to estimate the buffer size.

As shown in figure 3.1, we start the experiment with the vehicle at position P0,

with velocity v0, at start time T0. The vehicle then attempts to hold velocity v0 until

it reaches time T1. At T1, the vehicle accelerates until it reaches velocity v1 at time

T2. The vehicle then maintains the velocity v1 until time T3. Suppose that ideally the

vehicle should have reached position P3 at time T3, then the error in the final position

will be Elong = P3 − Pactual. The worst-case positive control error will happen in our

model when v0 = 0.1m/s and v1 = 3.0m/s. And the worst case negative error will

happen when v0 = 3m/s and v1 = 0.1m/s. Using the worst case of these 2 test, we

can determine the outer bound of our longitudinal error Elong, which will consequently

become the Safety Buffer. We perform this experiment 20 times, and measure Elong.

The maximum value of Elong was 50ms. Therefore at maximum speed, the buffer due

to vehicle control error is 75mm.

8

3.2 Estimating Time Synchronization Error

Our physical implementation is a distributed system containing multiple nodes

communicating with the central server. Without proper synchronization, commands

given to nodes can be executed at different time, depending on when the command

is received. Synchronization is the solution to have the same understanding of time

among the nodes. Different time synchronization methods like NTP, PTP, GNSS,

etc. can be used in order to synchronize with the server. We utilize NTP (network

Time Protocol) for synchronization in our setup. Our time synchronization error with

NTP is well defined and is 1 millisecond over the course of the test. Therefore, at

maximum speed, the buffer due to time synchronization error is 3mm.

Overall in our system a safety buffer of size 78mm is needed to be added to the

front and back of the vehicle to account for the inaccuracy in the position. The lateral

error (along the width of the lane) can be disregarded because it is less than the lane

width and therefore does not affect any calculations.

9

Chapter 4

TIMING PROBLEMS IN VT-IM

Velocity Transaction IMs or VT-IMs work in a manner in which, when a vehicle makes

an entrance request, the intersection manager calculates the optimal speed and sends

it back to vehicle. Then, the vehicle executes the received command. The algorithms

??, and 2 show how the IM and vehicles collaborate with each other.

if transmission line is crossed then

send a request to IM;

receive a response from IM;

execute the command;

end

Algorithm 1: Scheduling Algorithm - Vehicle

if a request is received then

V = calculate();

send(V);

end

Algorithm 2: Scheduling Algorithm - IM

Although VT-IMs provide the high throughput by adopting FCFS or other schedul-

ing algorithm, it does not consider computational delay caused by intersection man-

ager and network delay imposed due to communication. Neglecting these delays

affects the system correctness because the vehicle executes the received velocity com-

mand as soon as it is received. Figure 4.1 depicts how round trip delay (RTD) affects

10

the position of the car. In order to achieve safe operation, we must add extra safety

buffer around the vehicle to take into account the worst case RTD.

The RTD or Round trip delay consists of computation delay, and the communi-

cation delay. Computational delay is the amount of time it takes for the intersection

manager to compute the required information a vehicle needs. Compute time is

longest when the most cars requests are in the queue, therefore the worst case can

be defined as four car arrivals at the exact time, one in each of the 4 directions. The

resulting worst-case RTD from 10 tests with four car arrivals was 135 milliseconds.

The network delay is the time requires to send the information back and forth be-

tween the car and the IM, assuming the computation on IM is instant. In order to

measure this delay, each request message can be followed by an acknowledge message

from the receiver. Subtracting the time the message is sent, from the time the Ack is

received, network delay for that message is accounted for. For our 2.4 GHz wireless

devices, the network delay was quite nominal, and came to be 15 milliseconds. So,

we have bounded RTD with 150 milliseconds. At maximum speed, the 150 ms delay

would equate to an extra 0.45m length being added to the front and back of the

vehicle. With the worst-case RTD bound and Safety Buffer added in, our vehicles

Figure 4.1: Round-Trip delay and computational delay cause late command delivery

11

will be 3.46x longer longitudinally than they were originally.

In order to guarantee the safety of the vehicle, the Worst-Case Computational

Delay (WCCD) should be considered based on the worst case scenario.

12

Chapter 5

RELATED WORKS

5.1 Velocity Transaction Based IMs

Capitalizing on the optimization problem that intersection scheduling presents,

there have been a number of works looking at the problem of how to schedule vehicles

most efficiently using a velocity/acceleration profile based control methodology. In

2012, Lee and Park introduced a optimal methodology in order to scheduling the

incoming vehicles Lee and Park (2012). They constructed a conflict look-up table for

vehicle entrance and exit lanes. The work is limited to simulation. Similarly, Zohdy,

et al. solved an optimization problem to minimize the total delay. They proposed

a tool which avoids collision based on characteristic of vehicles Zohdy et al. (2012).

Unfortunately, neither of these methods consider the WCRTD problem and its effect

on the safety of their policies. In 2016, Tache et. al. proposed a batch scheduling

technique that features a re-organization period where any vehicles that have reached

the transmission line in a certain period of time can be shuffled around to find the

most efficient order of entrance to the intersection Tachet et al. (2016). After the

reshuffling period has elapsed for a given vehicle, the intersection manager picks the

vehicle velocity using a scheduling technique where the vehicle entrance time is set as

the time the last vehicle occupying the designated lane has exited. The authors claim

that the throughput can be doubled in comparison with fair scheduling. The authors

implemented the technique for a two lane case in simulation. Computation time

and network traffic overhead would be very high method because of the reordering,

thereby increasing WCRTD. Because the authors do not model RTD, the work could

13

not be applied to a physical system.

Some TT-IM methods implemented in a physical model, but at speeds too slow

to experience timing and modeling issues. In Milanés et al. (2010), a fuzzy controller

for a simple crossroad is presented. They evaluated their work by experiment on 2

mass produced vehicle in Spain. Perronnet et all implemented a simple 2 way inter-

section utilizing Lego NXT robots and road marking to test intersection management

protocols on a realistic model Perronnet et al. (????).

5.2 Query-Based IMs

Dresner and Stone introduced AIM (Autonomous Intersection Management), a

First Come First-Served (FCFS) IM policy that mitigates the effect of WCRTD

Dresner and Stone (2004), Dresner and Stone (2008), Dresner and Stone (2005),

VanMiddlesworth et al. (2008). When an incoming vehicle reaches the designated

line, it sends an request to the Aim IM indicating arrival time and velocity. The IM

simulates the trajectory of the vehicle in the intersection and response to the vehicle

with an approval if the trajectory has no overlap with the reserved spots regarding

existing vehicles. If the request gets rejected, the vehicle prepares to stop before the

intersection line.

if a request is received then

V = calculate();

send(V);

end

Algorithm 3: Query Algorithm - IM

AIM has a number of problems including a high computation load due to pro-

cessing multiple requests and performing a simulation for each request. AIM has

14

if designated line is crossed then

send a request;

receive a response;

if Approved then

keep driving;

else

slow down and prepare to stop;

request again after the Timeout;

end

end

Algorithm 4: Query Algorithm - Vehicle

extra communication overhead because when a request gets rejected, the vehicle have

to make a new request. In addition, AIM cannot achieve the maximum throughput

since it simulates the trajectory for only two speeds (current and max), and this query

based management limits the IM from reach maximum efficiency.

Dresner and Stone implemented an augmented reality simulation using their Java

based Autonomous Intersection Simulator, where virtual cars shared a 4 way stop

intersection with an actual autonomous car for the 2007 Darpa Challenge Dresner and

Stone (2008). Fok, et al. built a scale model of autonomous vehicles Fok et al. (2012).

Their vehicle systems proves it is possible to use the AIM autonomous intersection

policy on a scale model. However, there are clear limitations: The use of only 4

vehicles (one vehicle per direction), and the slow speed of the vehicles (0.5 m/s @

1/10 scale correlates to 11.1847 MPH) in the intersection cause timing and modeling

problems to be masked.

15

Chapter 6

OUR TIME-SENSITIVE TECHNIQUE

In order to cancel the effect of RTD in our implementation, we treat WCRTD as

a delay in command execution. Figure 6.2 depicts 3 different scenarios where the

vehicles start executing the command despite round trip delay.

Figure 6.1: Vehicles receiving command from IM with different round trip delays

In our method, when the vehicle cross the designated line, sends a request message

to IM. IM calculates the desired Time of Arrival, ToA, and the execution time, TE,

(actuation position PE) based on WCRTD which is known for a specific intersection

setup and vehicle and sends it back to the vehicle. after receiving the message, it

is vehicle’s job to create a trajectory based on time of arrival and TE and track it

thoroughly. The following pseudo-algorithms shows how proposed technique works

on intersection manager and vehicle.

Consider the example of a vehicle transmitting a request message at PT and receiv-

ing the response at PR (Figure 6.2). Then, vehicle will start executing the command

at PE.

16

if a request is received then

calculate TE and ToA ;

send back TE and ToA;

add the car to the list;

end

if an Exit notification is received then

remove the car from the list;

end

Algorithm 5: Crossroads Algorithm - IM

𝑃𝑇 𝑃𝐸 PI

𝐷𝐸

𝑉

Distance𝐷𝑇
Δ𝑋

𝑉𝑚𝑎𝑥

𝑉𝑖𝑛𝑖𝑡

𝑃𝑅

Figure 6.2: Example of a vehicle trajectory based on max acceleration

IM computes the TE as following:

TE = TT +WCRTD

where TT is the time captured by the vehicle at transmit position. The vehicle should

start executing the command exactly at time TE. In our management technique, the

IM checks the conflicts between current vehicle’s trajectory and the trajectories of

the existing ones. Then, a safe ToA regarding existing vehicles is calculated based on

kinematic equation of vehicles and the earliest arrival time is selected and assigned

17

if designated line is crossed then

time stamp the time (TT);

send TT , PT and VT (current position and velocity);

wait for response;

if response is timed out then

slow down and prepare to stop;

Go to line 2;

else

receive TE and ToA ;

create reference trajectory;

track the trajectory;

end

end

if Exit line is crossed then

send exit message to IM;

end

Algorithm 6: Crossroads Algorithm - Vehicle

to the vehicle. The calculated ToA may not be achievable for the vehicle depending

of execution time, TE, ToA, maximum acceleration amax and maximum deceleration

dmax. Therefore, the IM checks the calculated ToA based on longest acceleration time

TAcc

TAcc =
Vmax − Vinit

amax

where Vinit is initial speed of the vehicle. Then, earliest time of arrival can be calcu-

lated as

EToA = TAcc +
Vmax

DE − ∆X

18

where ∆X is acceleration distance as following

∆X = (0.5amaxT
2
Acc + VinitTAcc)

and D is the the distance between intersection line and execution position

D = DT − Vinit(TT − TE)

where DT and TT are transmission distance and time respectively which are received

from the vehicle.

19

Chapter 7

EMPIRICAL EVIDENCE

7.1 Time-sensitive Programming Enables Efficient IM

In order to evaluate the effect of the extra safety buffer, we designed 10 different

traffic scenarios, and tried them with the two IMs, the VT-IM, which requires the

extra safety buffers for safe operation, and Crossroads, which does not. Two of the

cases, Scenario 1, and Scenario 10 are pre-designed, as the worst-case and best-case for

VT-IM. In the best case, Scenario 10, the traffic is so sparse that the presence/absence

of the safety buffer does not matter much. The cars can go cross the intersection with

little conflict. On the contrary, in the worst-case, Scenario 1, all the cars arrive at the

intersection at almost the same time, and the presence of extra safety buffers around

the cars reduces the rate at which the cars can cross the intersection. In the rest

of the cases, the vehicle orders and distances are randomly selected. We run all the

traffic scenarios for each IM, and the delay is measured for all the cars. From here

we compute the average delay of the cars. The experiment is repeated 10 times, and

the average of that is plotted in figure 7.1.

The results show that for each scenario, Crossroads has lower average delay, rang-

ing from 1.24X better for the worst-case, Scenario 1, to 1.08X better for Scenario

10. The slightly improved performance of Crossroads in Scenario 10 is because even

in the case where vehicles are nicely spread out, there are still some Safety Buffer

conflicts that cause the VT-IM policy to be slower.

20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 AVGA
V

ER
A

G
E

W
A

IT
 T

IM
E

(S
EC

O
N

D
S)

SCENARIO

Average Delay in Scale Model

VT-IM Crossroads

Figure 7.1: Average wait time comparison for vehicles in 4 different cases of our

physical implementation.

7.2 Crossroad Scales Well

In order to show how our method scales, we implemented three simulators in

Matlab for AIM, velocity-transaction IM with extra safety buffers and Crossroads.

The IM code for TT-IM and Crossroads are exactly the same as those from our scale

implementation. The major difference is in the modeling versus the physical scale

model. In our Matlab simulators, the following differential equations are considered

to model motion of the vehicles: 
ẋ = vcos(φ)

ẏ = vsin(φ)

φ̇ = v
l
tan(ψ)

(7.1)

where x, y represents the longitude and latitude of the car respectively in the

Cartesian coordinates, φ is heading of the car from east, v is car velocity, l is car’s

21

wheelbase and ψ is steering angle. The Matlab simulators are ran on an ordinary

PC (Intel(R) Core(TM) i7-6700 @ 3.4GHz, 16 GB of memory and 64-bit Windows

10 Enterprise).

In our AIM simulator, we only considered sensor error buffer. In VT-IM, we con-

sidered both sensor error and WCRTD. Tn our time-sensitive approach, Crossroads,

we only consider sensor error as WCRTD is already accounted for. We used the same

input traffic flow and sequence of vehicle for all simulator to have a fair comparison.

We considered the same velocity computational method for VT-IM and crossroads

to emphasize on the effect of a larger buffer. Although the computation time of VT-

IM and Crossroads is the same, AIM has up to 16x higher computation overhead.

However, due to trial error scheme of AIM, it has 16x more computational delay

than crossroads on average. Figure 7.2 also shows the throughput of the intersection

for different flow rates routing 160 cars. In our computation, throughput is defined

number of managed vehicles divided by total wait time.

Figure 7.2 reveals the throughput of Crossroads is 1.28x greater than AIM in

worst case and 1.15x in average. Figure 7.2 also shows the throughput of Crossroad

is 1.62x better than VT-IM in worst case and 1.36x in average. The results show

that all three methods has the same throughput, however, AIM and VT-IM are

saturated with increasing the input flow rate. VT-IM efficiency is better than AIM

in low input flows (0.05-0.4 Car/Lane/Second) because at low flow rates, there are

less conflict between the arriving vehicle. However, in higher flow rates (0.45 - 1.25

Car/Lane/Second), AIM can handle the traffic in a wise manner since the VT-IM

has a larger buffer than AIM. The results from Matlab simulator show Crossroads

has better throughput in comparison with a VT-IM policy because in higher input

flow rates, Crossroads performs even better. This is mainly due to the effect of extra

buffer which saturates the intersection earlier.

22

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 0.2 0.4 0.6 0.8 1 1.2 1.4

TH
R

O
U

G
H

P
U

T
(N

C
A

R
S/

W
A

IT
)

INPUT FLOW RATE (CAR/SECOND/LANE)

THROUGHPUT & COMPUTATION TIME

AIM Crossroads Ideal VT-IM

Figure 7.2: Throughput and Computation time for different input flow rates

23

REFERENCES

Dresner, K. and P. Stone, “Multiagent traffic management: A reservation-based in-
tersection control mechanism”, in “Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume 2”, pp. 530–
537 (IEEE Computer Society, 2004).

Dresner, K. and P. Stone, “Multiagent traffic management: An improved intersection
control mechanism”, in “Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems”, pp. 471–477 (ACM, 2005).

Dresner, K. and P. Stone, “A multiagent approach to autonomous intersection man-
agement”, Journal of artificial intelligence research 31, 591–656 (2008).

Fok, C.-L., M. Hanna, S. Gee, T.-C. Au, P. Stone, C. Julien and S. Vishwanath, “A
platform for evaluating autonomous intersection management policies”, in “Cyber-
Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference on”,
pp. 87–96 (IEEE, 2012).

Lee, J. and B. Park, “Development and evaluation of a cooperative vehicle intersection
control algorithm under the connected vehicles environment”, IEEE Transactions
on Intelligent Transportation Systems 13, 1, 81–90 (2012).

Milanés, V., J. P. Rastelli, E. Onieva and C. González, “Controller for urban inter-
sections based on wireless communications and fuzzy logic”, IEEE Transactions on
Intelligent Transportation Systems (2010).

Perronnet, F., A. Abbas-Turki and A. El-Moudni, “Cooperative intersection manage-
ment: Using mini-robots to compare sequenced-based protocols”, (????).

Tachet, R., P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli, D. Helbing and
C. Ratti, “Revisiting street intersections using slot-based systems”, PloS one 11,
3, e0149607 (2016).

VanMiddlesworth, M., K. Dresner and P. Stone, “Replacing the stop sign: Unman-
aged intersection control for autonomous vehicles”, in “Proceedings of the 7th in-
ternational joint conference on Autonomous agents and multiagent systems-Volume
3”, pp. 1413–1416 (International Foundation for Autonomous Agents and Multia-
gent Systems, 2008).

Zohdy, I. H., R. K. Kamalanathsharma and H. Rakha, “Intersection management for
autonomous vehicles using icacc”, in “2012 15th International IEEE Conference on
Intelligent Transportation Systems”, pp. 1109–1114 (IEEE, 2012).

24

	LIST OF TABLES
	LIST OF FIGURES
	1
	2
	3
	3.1 Estimating Sensing Error
	3.2 Estimating Time Synchronization Error

	4
	5
	5.1 Velocity Transaction Based IMs
	5.2 Query-Based IMs

	6
	7
	7.1 Time-sensitive Programming Enables Efficient IM
	7.2 Crossroad Scales Well

	REFERENCES

