
Crossroads - A Time-Sensitive Autonomous Intersection
Management Technique

Edward Andert, Mohammad Khayatian, Aviral Shrivastava
Compiler-Microarchitecture Lab, Arizona State University

eandert@asu.edu, mkhayati@asu.edu, Aviral.Shrivastava@asu.edu

ABSTRACT
For autonomous vehicles, intelligent autonomous intersec-
tion management will be required for safe and efficient op-
eration of the intersection. In order to achieve safe oper-
ation despite uncertainty in vehicle’s trajectory, intersec-
tion management techniques must consider a safety buffer
around the vehicles. For truly safe operation, the safety
buffer should also account for the network and computa-
tional delay caused by communication with the IM (Intersec-
tion Manager) to request entry and receive a reply. However,
modeling the worst-case computation and network delay as
additional safety buffer degrades the throughput of the inter-
section. To avoid this problem, AIM[1] - a popular state-of-
the-art IM adopts a query-based approach, in which the IM
only provides a yes/no answer to vehicle’s queries of speed
and arrival time. Although this solution does not degrade
the position uncertainty, but it increases the network traf-
fic, the amount of computation on both the car and the IM,
and ultimately results in poor intersection throughput. We
present Crossroads - a time-sensitive programming method
to program the interface of a vehicle and IM, without requir-
ing additional buffer to account for the effect of network and
computational delay, and enables efficient intersection man-
agement. Our results on 1/10 scale model of intersection
using TRAXXAS RC cars demonstrate that time-sensitive
programming based approach Crossroads obviates the need
for large buffers to accommodate for the network and com-
putation delay, and can reduce the average wait time for the
vehicles at a single-lane intersection by 24%. To compare
Crossroads with previous approaches, we perform extensive
Matlab simulations, and find that Crossroads achieves on
average 1.62X higher throughput than simple VT-IM with
extra safety buffers, and 1.36X better than AIM.

1. INTRODUCTION
As cars become autonomous, intersections are no longer

constrained by the humans that are currently driving and
instead, automated Intersection Managers (IMs)1 can make
intersections safer and more efficient. IM interacts with the
vehicles as they approach the intersection to find a safe and
efficient way to operate the intersection.

There are 2 main ways to design the interface between the
vehicles and the IM. The first is the most intuitive one, which
we call Veloctiy Transaction IM (or VT-IM) – in which the

1In this paper we use the acronym IM for both intersection
manager and intersection management. The correct word
will be clear from the context.

approaching vehicles announce their arrival to the IM, and
the IM provides them with a velocity to follow, that will not
only ensure safe but also efficient operation of the intersec-
tion. To guarantee the safety of vehicles in this and as a
matter of fact, any other intersection, a safety buffer must
be considered around the vehicle which accounts for the un-
certainty in the position and velocity of the vehicle. The
uncertainty in the position and speed of the vehicle can be
due to various reasons, including the errors in various sensors
and actuators, the data fusion algorithms, and even due to
the clock synchronization drift between the vehicle and the
IM. However, for a truly safe operation in an VT-IM, the
safety buffer calculation should also take into account the
network and computation delay related to the interaction
between the vehicle and the IM. Here the network delay is
the variable lag in delivering information to the intersection
manager and then back to the vehicle, and computational
delay is the time it takes for the IM to compute the cor-
rect response to send back to the vehicle. Together network
and computation delay compose RTD (Round Trip Delay).
Neglecting RTD makes VT-IM scheduling methods vulner-
able to uncertainties and may lead to accidents. The safety
buffer should correspond to the worst-case RTD.

To test the effects of error and worst-case RTD, we im-
plement a 1/10 scale intersection model using 8 Traxxas
RC cars setup for autonomous driving with a top speed
of 3.0 m/s and a length and width of 568mm by 298mm
respectively. The cars communicate with the IM using a
NRF24L01+, 2.4GHz serial network adapters. For our car
intersection setup, the worst case safety buffer due to the
control and clock error was about 78mm, while the buffer
due to the RTD was about 450mm. Clearly the buffer due to
RTD is quite significant! In real cars, we expect the safety
buffer due to sensor and actuator error to be smaller, since
they use higher quality components, but the safety buffer
due to RTD can be much larger due to longer communica-
tion distance of the vehicle with the IM, and much higher
traffic at intersections. Adding such large safety buffers, al-
though necessary, severely degrades the performance of the
intersections.

One way to avoid having this large safety buffer due to
RTD is to use a Query-Based IM (QB-IM) design. This
approach is quite popular, and is used in AIM project[1, 2].
In this, the vehicle approaches the intersection at a constant
speed, and sends a speed query to the IM, and IM only
replies with a yes/no answer. If the answer is yes, the vehicle
can continue moving with the speed, and if the answer is no,
the car slows down to a lower speed, and makes a request



Figure 1: Five vehicles in a real implementation. Top speed
3.0 m/s. Intersection lines are overlayed after the test.

again. Although QB-IM approach does not incur error in
the position of the vehicle due to RTD, and therefore extra
safety buffer is not required, however, in such an IM design
there is not much scope for the IM to optimize the traffic
at the intersection. In particular, the QB-IM design cannot
solve an optimization problem and send it’s result to the
vehicles – it can only give a yes/no answer and achieve safety.
Ultimately, a QB-IM will increase the network traffic, the
amount of computation on both the car and the IM – all
finally result in poor intersection throughput.

To solve this RTD related extra safety buffer problem
correctly, we present our approach: Crossroads - a time-
sensitive programming method to program the TT-IM, with-
out requiring the additional buffer due to RTD. Crossroads
solves the extra safety buffer problem by fixing the action
time of the new speed received by the vehicle, so that the
position of the vehicle becomes deterministic. We use 1/10
scale models and design several traffic scenarios to test the
two IM techniques, the vT-IM, which requires extra safety
buffers, and Crossroads (that does not require the extra
safety buffers). We find that in Crossroad, the average and
worst case slow downs of the car 16% less 24% respectively.
We also implemented all the three IMs (the simple VT-Im,
Crossroads, and AIM) in Matlab to study the scalability of
our approach. We run the intersection for randomly gen-
erated cars for different input flow rates. We find that
at low input rates, all the techniques perform almost the
same, however, as input rate increases, the throughput of
VT-IM drops sharply. QB-IM works better, but Crossroads
scales very well. On average over all input flows, Crossroads
has 1.62X better throughput (number of cars per second

average delay per car
) than

VTI-IM, and 1.36X better than AIM. The performance over-
head and network traffic of Crossroads and VT-IM is up to
20X lower than AIM due to it’s query-based approach.

2. SETUP TO EVALUATE IM
Most Intersection Management (IM) techniques have been

evaluated on simulators, therefore researchers did not en-
counter timing and error related problems. In order to test
the effectiveness of IM policies on a physical intersection,
we created a 1/10 scale model. As shown in figure 1, we
have designed a 4-way intersection with one lane per road.
The size of the intersection is 1.2 × 1.2m2 and the vehicle
length and width are 0.568m and 0.296m respectively. Each
car will start communicating with the intersection manager
when crossing a designated transmission line. The distance

between intersection and designated transmission line is 3m.
The maximum velocity of the cars is limited to 3m/s.

We used RWD (rear wheel drive) Traxxas Slash RC as
the chassis. The stock motors were exchanged with smaller
motors with built in quadrature encoders for fine-grain feed-
back control. Arduino Mega 2560s were used as the cen-
tral control unit of the vehicles. Arduino Nanos were uti-
lized to monitor quadrature encoders for localization of the
vehicles. Bosch BNO055 9DOF sensor fusion IMUs were
used for steering feedback. For wireless communication,
NRF24L01+, 2.4GHz serial network adapters were utilized.
Our setup is similar to [3].

The vehicle interaction with the IM is implemented broadly
as a state machine with 4 states: i) Arriving state: The ve-
hicle is in this state before it reaches the transmission line.
ii) Sync state: Once the vehicle reaches the transmission
line, it registers with the IM, and sends a sync request to
the IM. The IM sends back the time synchronization data
(Based on NTP) [4]. iii) Request state: Once the time sync is
achieved, the vehicle transmits a packet of data to the inter-
section manager requesting to make an intersection crossing.
After processing the requests ahead in a FIFO queue, the
IM computes the response for the vehicle and sends the re-
sponse (e.g., proceed at a particular speed). vi) Follow state:
Once the vehicle receives the plan from IM, the vehicle then
follows the plan, and when it crosses the intersection, the
vehicle sends an exit timestamp to notify the IM, and goes
back to the Arriving state for the next intersection. The exit
timestamp allows us to track wait time of each vehicle.

Different IMs are implemented and run on a laptop with
10 GB memory, Core i7 -3517u @1.9/2.4 GHz CPU and Win-
dows 8.1 64-bit OS. The IMs are written in Matlab R2016.
The communication between the vehicles and the IM is an
exchange of about 44-bytes of data for each vehicle. In some
rare cases, when a re-transmit is needed because of commu-
nication timeout, resulting, there is an overhead of 24 bytes
per re-transmit.

3. SAFETY BUFFER CALCULATION
In any real system (not simulation), there are always un-

certainties/inaccuracies in identifying the exact state of the
system – in our case, the position and velocity of the vehi-
cles. The uncertainty in the state of the system can be due
to several reasons, including the sensor errors (in our case,
the position and speed sensors), the errors due to state esti-
mation algorithm used (for example, if a GPS and IMU are
used to estimate the position and the velocity of the vehicle,
then the sensor fusion algorithm can affect the accuracy of
the position and velocity), and even due to the difference in
the clocks of the different components of the system (in our
case, the synchronization error between the IM and the ve-

𝑬𝑳𝒂𝒕

𝑬𝑳𝒂𝒕

𝑬𝑳𝒐𝒏𝒈
𝑬𝑳𝒐𝒏𝒈𝑳

𝑾

Figure 2: Vehicle modeled with lateral, longitudinal error
including round-trip delay.



Figure 3: Expected velocity versus actual velocity due to
control algorithm errors, and sensor errors.

hicle). In order to achieve safe operation of the intersection,
a safety buffer must be modeled around the vehicles. The
safety buffer essentially implies that the vehicle can be any-
where within the buffer and the movement of the vehicles
must be planned/implemented such that the safety buffers
do not overlap at any moment in time. Next we show how
we estimate this safety buffer for our vehicles.

3.1 Estimating Sensing Error
Vehicle positioning is based on acquired measurements

from sensors, so an IM design must take into account the er-
ror propagated from GPS, encoder, etc. It should be noted
that an encoder error would affect the vehicle longitudinally,
whereas GPS error would affect a vehicle both laterally and
longitudinally. Figure 2 depicts both cases. Although it
may be possible to estimate the size of safety buffer around
the vehicles using the error numbers from the data sheets
of the sensors, it is still hard to estimate the affect of the
data fusion and control algorithms on the buffer. Therefore,
we devise an experiment to estimate the error in the overall
position and velocity of the car, and use that to estimate
the buffer size.

As shown in figure 3, we start the experiment with the ve-
hicle at position P0, with velocity v0, at start time T0. The
vehicle then attempts to hold velocity v0 until it reaches time
T1. At T1, the vehicle accelerates until it reaches velocity
v1 at time T2. The vehicle then maintains the velocity v1
until time T3. Suppose that ideally the vehicle should have
reached position P3 at time T3, then the error in the final po-
sition will be Elong = P3 − Pactual. The worst-case positive
control error will happen in our model when v0 = 0.1m/s
and v1 = 3.0m/s. And the worst case negative error will
happen when v0 = 3m/s and v1 = 0.1m/s. Using the worst
case of these 2 test, we can determine the outer bound of
our longitudinal error Elong, which will consequently be-
come the Safety Buffer. We perform this experiment 20
times, and measure Elong. The maximum value of Elong

was 50ms. Therefore at maximum speed, the buffer due to
vehicle control error is 75mm.

3.2 Estimating Time Synchronization Error
Our physical implementation is a distributed system con-

taining multiple nodes communicating with the central server.
Without proper synchronization, commands given to nodes
can be executed at different time, depending on when the
command is received. Synchronization is the solution to
have the same understanding of time among the nodes. Dif-
ferent time synchronization methods like NTP, PTP, GNSS,
etc. can be used in order to synchronize with the server. We
utilize NTP (network Time Protocol) for synchronization
in our setup. Our time synchronization error with NTP is
well defined and is 1 millisecond over the course of the test.
Therefore, at maximum speed, the buffer due to time syn-

chronization error is 3mm.
Overall in our system a safety buffer of size 78mm is

needed to be added to tthe front and back of the vehicle
to account for the inaccuracy in the position. The lateral
error (along the width of the lane) can be disregarded be-
cause it is less than the lane width and therefore does not
affect any calculations.

4. TIMING PROBLEMS IN VT-IM
Velocity Transaction IMs or VT-IMs work in a manner

in which, when a vehicle makes an entrance request, the
intersection manager calculates the optimal speed and sends
it back to vehicle. Then, the vehicle executes the received
command. The algorithms 5, and 4 show how the IM and
vehicles collaborate with each other.

Algorithm 1: Scheduling Algorithm - Vehicle

1 if transmission line is crossed then
2 send a request to IM;
3 receive a response from IM;
4 execute the command;

5 end

Algorithm 2: Scheduling Algorithm - IM

1 if a request is received then
2 V = calculate();
3 send(V);

4 end

Although VT-IMs provide the high throughput by adopt-
ing FCFS or other scheduling algorithm, it does not con-
sider computational delay caused by intersection manager
and network delay imposed due to communication. Neglect-
ing these delays affects the system correctness because the
vehicle executes the received velocity command as soon as
it is received. Figure 4 depicts how round trip delay (RTD)
affects the position of the car. In order to achieve safe op-
eration, we must add extra safety buffer around the vehicle
to take into account the worst case RTD.

The RTD or Round trip delay consists of computation
delay, and the communication delay. Computational delay
is the amount of time it takes for the intersection manager to
compute the required information a vehicle needs. Compute
time is longest when the most cars requests are in the queue,
therefore the worst case can be defined as four car arrivals at
the exact time, one in each of the 4 directions. The resulting
worst-case RTD from 10 tests with four car arrivals was 135
milliseconds. The network delay is the time requires to send
the information back and forth between the car and the IM,
assuming the computation on IM is instant. In order to
measure this delay, each request message can be followed by
an acknowledge message from the receiver. Subtracting the

Figure 4: Round-Trip delay and computational delay cause
late command delivery



time the message is sent, from the time the Ack is received,
network delay for that message is accounted for. For our 2.4
GHz wireless devices, the network delay was quite nominal,
and came to be 15 milliseconds. So, we have bounded RTD
with 150 milliseconds. At maximum speed, the 150 ms delay
would equate to an extra 0.45m length being added to the
front and back of the vehicle. With the worst-case RTD
bound and Safety Buffer added in, our vehicles will be 3.46x
longer longitudinally than they were originally.

In order to guarantee the safety of the vehicle, the Worst-
Case Computational Delay (WCCD) should be considered
based on the worst case scenario.

5. RELATED WORKS

5.1 Velocity Transaction Based IMs
Capitalizing on the optimization problem that intersec-

tion scheduling presents, there have been a number of works
looking at the problem of how to schedule vehicles most ef-
ficiently using a velocity/acceleration profile based control
methodology. In 2012, Lee and Park introduced a optimal
methodology in order to scheduling the incoming vehicles
[5]. They constructed a conflict look-up table for vehicle en-
trance and exit lanes. The work is limited to simulation.
Similarly, Zohdy, et al. solved an optimization problem
to minimize the total delay. They proposed a tool which
avoids collision based on characteristic of vehicles [6]. Un-
fortunately, neither of these methods consider the WCRTD
problem and its effect on the safety of their policies. In 2016,
Tache et. al. proposed a batch scheduling technique that
features a re-organization period where any vehicles that
have reached the transmission line in a certain period of
time can be shuffled around to find the most efficient order
of entrance to the intersection [7]. After the reshuffling pe-
riod has elapsed for a given vehicle, the intersection manager
picks the vehicle velocity using a scheduling technique where
the vehicle entrance time is set as the time the last vehicle
occupying the designated lane has exited. The authors claim
that the throughput can be doubled in comparison with fair
scheduling. The authors implemented the technique for a
two lane case in simulation. Computation time and net-
work traffic overhead would be very high method because
of the reordering, thereby increasing WCRTD. Because the
authors do not model RTD, the work could not be applied
to a physical system.

Some TT-IM methods implemented in a physical model,
but at speeds too slow to experience timing and modeling
issues. In [8], a fuzzy controller for a simple crossroad is pre-
sented. They evaluated their work by experiment on 2 mass
produced vehicle in Spain. Perronnet et all implemented
a simple 2 way intersection utilizing Lego NXT robots and
road marking to test intersection management protocols on
a realistic model [9].

5.2 Query-Based IMs
Dresner and Stone introduced AIM (Autonomous Inter-

section Management), a First Come First-Served (FCFS)
IM policy that mitigates the effect of WCRTD [1], [2], [10],
[11]. When an incoming vehicle reaches the designated line,
it sends an request to the Aim IM indicating arrival time and
velocity. The IM simulates the trajectory of the vehicle in
the intersection and response to the vehicle with an approval
if the trajectory has no overlap with the reserved spots re-

garding existing vehicles. If the request gets rejected, the
vehicle prepares to stop before the intersection line.

Algorithm 3: Query Algorithm - IM

1 if a request is received then
2 V = calculate();
3 send(V);

4 end

Algorithm 4: Query Algorithm - Vehicle

1 if designated line is crossed then
2 send a request;
3 receive a response;
4 if Approved then
5 keep driving;
6 else
7 slow down and prepare to stop;
8 request again after the Timeout;

9 end

10 end

AIM has a number of problems including a high computa-
tion load due to processing multiple requests and performing
a simulation for each request. AIM has extra communi-
cation overhead because when a request gets rejected, the
vehicle have to make a new request. In addition, AIM can-
not achieve the maximum throughput since it simulates the
trajectory for only two speeds (current and max), and this
query based management limits the IM from reach maxi-
mum efficiency.

Dresner and Stone implemented an augmented reality sim-
ulation using their Java based Autonomous Intersection Sim-
ulator, where virtual cars shared a 4 way stop intersection
with an actual autonomous car for the 2007 Darpa Chal-
lenge [2]. Fok, et al. built a scale model of autonomous ve-
hicles [3]. Their vehicle systems proves it is possible to use
the AIM autonomous intersection policy on a scale model.
However, there are clear limitations: The use of only 4 ve-
hicles (one vehicle per direction), and the slow speed of the
vehicles (0.5 m/s @ 1/10 scale correlates to 11.1847 MPH)
in the intersection cause timing and modeling problems to
be masked.

6. OUR TIME-SENSITIVE TECHNIQUE
In order to cancel the effect of RTD in our implementa-

tion, we treat WCRTD as a delay in command execution.
Figure 6 depicts 3 different scenarios where the vehicles start
executing the command despite round trip delay.

Figure 5: Vehicles receiving command from IM with differ-
ent round trip delays

In our method, when the vehicle cross the designated line,
sends a request message to IM. IM calculates the desired



Time of Arrival, ToA, and the execution time, TE , (actua-
tion position PE) based on WCRTD which is known for a
specific intersection setup and vehicle and sends it back to
the vehicle. after receiving the message, it is vehicle’s job
to create a trajectory based on time of arrival and TE and
track it thoroughly. The following pseudo-algorithms shows
how proposed technique works on intersection manager and
vehicle.

Algorithm 5: Crossroads Algorithm - IM

1 if a request is received then
2 calculate TE and ToA ;
3 send back TE and ToA;
4 add the car to the list;

5 end
6 if an Exit notification is received then
7 remove the car from the list;
8 end

Algorithm 6: Crossroads Algorithm - Vehicle

1 if designated line is crossed then
2 time stamp the time (TT );
3 send TT , PT and VT (current position and velocity);
4 wait for response;
5 if response is timed out then
6 slow down and prepare to stop;
7 Go to line 2;

8 else
9 receive TE and ToA ;

10 create reference trajectory;
11 track the trajectory;

12 end

13 end
14 if Exit line is crossed then
15 send exit message to IM;
16 end

Consider the example of a vehicle transmitting a request
message at PT and receiving the response at PR (Figure 6).
Then, vehicle will start executing the command at PE .

𝑃𝑇 𝑃𝐸 PI

𝐷𝐸

𝑉

Distance𝐷𝑇
Δ𝑋

𝑉𝑚𝑎𝑥

𝑉𝑖𝑛𝑖𝑡

𝑃𝑅

Figure 6: Example of a vehicle trajectory based on max
acceleration

IM computes the TE as following:

TE = TT +WCRTD

where TT is the time captured by the vehicle at transmit
position. The vehicle should start executing the command
exactly at time TE . In our management technique, the IM
checks the conflicts between current vehicle’s trajectory and
the trajectories of the existing ones. Then, a safe ToA re-
garding existing vehicles is calculated based on kinematic
equation of vehicles and the earliest arrival time is selected

and assigned to the vehicle. The calculated ToA may not
be achievable for the vehicle depending of execution time,
TE , ToA, maximum acceleration amax and maximum decel-
eration dmax. Therefore, the IM checks the calculated ToA
based on longest acceleration time TAcc

TAcc =
Vmax − Vinit

amax

where Vinit is initial speed of the vehicle. Then, earliest time
of arrival can be calculated as

EToA = TAcc +
Vmax

DE − ∆X

where ∆X is acceleration distance as following

∆X = (0.5amaxT
2
Acc + VinitTAcc)

and D is the the distance between intersection line and ex-
ecution position

D = DT − Vinit(TT − TE)

where DT and TT are transmission distance and time re-
spectively which are received from the vehicle.

7. EMPIRICAL EVIDENCE

7.1 Time-sensitive Programming Enables Ef-
ficient IM

In order to evaluate the effect of the extra safety buffer,
we designed 10 different traffic scenarios, and tried them
with the two IMs, the VT-IM, which requires the extra
safety buffers for safe operation, and Crossroads, which does
not. Two of the cases, Scenario 1, and Scenario 10 are pre-
designed, as the worst-case and best-case for VT-IM. In the
best case, Scenario 10, the traffic is so sparse that the pres-
ence/absence of the safety buffer does not matter much. The
cars can go cross the intersection with little conflict. On the
contrary, in the worst-case, Scenario 1, all the cars arrive
at the intersection at almost the same time, and the pres-
ence of extra safety buffers around the cars reduces the rate
at which the cars can cross the intersection. In the rest of
the cases, the vehicle orders and distances are randomly se-
lected. We run all the traffic scenarios for each IM, and the
delay is measured for all the cars. From here we compute
the average delay of the cars. The experiment is repeated
10 times, and the average of that is plotted in figure 7.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 AVGA
V

ER
A

G
E 

W
A

IT
 T

IM
E 

(S
EC

O
N

D
S)

SCENARIO

Average Delay in Scale Model

VT-IM Crossroads

Figure 7: Average wait time comparison for vehicles in 4
different cases of our physical implementation.

The results show that for each scenario, Crossroads has
lower average delay, ranging from 1.24X better for the worst-
case, Scenario 1, to 1.08X better for Scenario 10. The slightly



improved performance of Crossroads in Scenario 10 is be-
cause even in the case where vehicles are nicely spread out,
there are still some Safety Buffer conflicts that cause the
VT-IM policy to be slower.

7.2 Crossroad Scales Well
In order to show how our method scales, we implemented

three simulators in Matlab for AIM, velocity-transaction IM
with extra safety buffers and Crossroads. The IM code for
TT-IM and Crossroads are exactly the same as those from
our scale implementation. The major difference is in the
modeling versus the physical scale model. In our Matlab
simulators, the following differential equations are consid-
ered to model motion of the vehicles:

ẋ = vcos(φ), ẏ = vsin(φ), φ̇ =
v

l
tan(ψ) (1)

where x, y represents the longitude and latitude of the car
respectively in the Cartesian coordinates, φ is heading of
the car from east, v is car velocity, l is car’s wheelbase and
ψ is steering angle. The Matlab simulators are ran on an
ordinary PC (Intel(R) Core(TM) i7-6700 @ 3.4GHz, 16 GB
of memory and 64-bit Windows 10 Enterprise).

In our AIM simulator, we only considered sensor error
buffer. In VT-IM, we considered both sensor error and
WCRTD. Tn our time-sensitive approach, Crossroads, we
only consider sensor error as WCRTD is already accounted
for. We used the same input traffic flow and sequence of
vehicle for all simulator to have a fair comparison. We con-
sidered the same velocity computational method for VT-IM
and crossroads to emphasize on the effect of a larger buffer.
Although the computation time of VT-IM and Crossroads is
the same, AIM has up to 16x higher computation overhead.
However, due to trial error scheme of AIM, it has 16x more
computational delay than crossroads on average. Figure 8
also shows the throughput of the intersection for different
flow rates routing 160 cars. In our computation, through-
put is defined number of managed vehicles divided by total
wait time.

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 0.2 0.4 0 .6 0 .8 1 1.2

TH
R

O
U

G
H

P
U

T 
(N

C
A

R
S/

W
A

IT
)

INPUT FLOW RATE (CAR/SECOND/LANE)

THROUGHPUT 

Ideal Crossroads AIM VT-IM

Figure 8: Throughput for different input flow rates

Figure 8 reveals the throughput of Crossroads is 1.28x
greater than AIM in worst case and 1.15x in average. Fig-
ure 8 also shows the throughput of Crossroad is 1.62x better
than VT-IM in worst case and 1.36x in average. The re-
sults show that all three methods has the same throughput,
however, AIM and VT-IM are saturated with increasing the
input flow rate. VT-IM efficiency is better than AIM in low
input flows (0.05-0.4 Car/Lane/Second) because at low flow

rates, there are less conflict between the arriving vehicle.
However, in higher flow rates (0.45 - 1.25 Car/Lane/Second),
AIM can handle the traffic in a wise manner since the VT-
IM has a larger buffer than AIM. The results from Matlab
simulator show Crossroads has better throughput in com-
parison with a VT-IM policy because in higher input flow
rates, Crossroads performs even better. This is mainly due
to the effect of extra buffer which saturates the intersection
earlier.

8. CONCLUSION AND FUTURE WORK
In this paper, a time-sensitive technique, Crossroads, is

proposed in order to eliminate the effect of network and
computational delay in an automated intersection. This
technique not only improves the throughput, but guaran-
tees the safety of vehicle in real automated intersections.
The effectiveness of Crossroads is evaluated by conducting
experiments on 1/10 scale autonomous cars. In the future,
we plan to extend our technique by conducting more op-
timization experiments for velocity transaction intersection
managers, as well as look into effects of different vehicle con-
trol algorithms on the Safety Buffer size.

9. ACKNOWLEDGEMENT
This work was partially supported by funding from Na-

tional Science Foundation grants CCF 1055094 (CAREER),
CNS 1525855, NIST 60NANB16D305, and NIST 60NANB15D322.

10. REFERENCES
[1] K. Dresner and P. Stone, “Multiagent traffic

management: A reservation-based intersection control
mechanism,” in AAMAS 04. IEEE.

[2] K. Dresner and P. Stone, “A multiagent approach to
autonomous intersection management,” JAIR, 2008.

[3] C. Fok et al., “A platform for evaluating autonomous
intersection management policies,” in ICCPS, 2012.

[4] D. L. Mills, “Internet time synchronization: the
network time protocol,” IEEE Transactions on
Communications, 1991.

[5] J. Lee and B. Park, “Development and evaluation of a
cooperative vehicle intersection control algorithm
under the connected vehicles environment,” IEEE ITS
Transactions, 2012.

[6] I. H. Zohdy et al., “Intersection management for
autonomous vehicles using icacc,” in ITSC 2012.
IEEE.

[7] R. Tachet et al., “Revisiting street intersections using
slot-based systems,” PloS one, 2016.

[8] V. Milanés et al., “Controller for urban intersections
based on wireless communications and fuzzy logic,”
IEEE ITS Transactions, 2010.

[9] F. Perronnet et al., “Cooperative intersection
management: Using mini-robots to compare
sequenced-based protocols.”

[10] K. Dresner and P. Stone, “Multiagent traffic
management: An improved intersection control
mechanism,” in AAMAS, 2005.

[11] M. VanMiddlesworth et al., “Replacing the stop sign:
Unmanaged intersection control for autonomous
vehicles,” in AAMAS, 2008.


	Introduction
	Setup to Evaluate IM
	Safety Buffer Calculation
	Estimating Sensing Error
	Estimating Time Synchronization Error

	Timing Problems in VT-IM
	Related Works
	Velocity Transaction Based IMs
	Query-Based IMs

	Our Time-Sensitive Technique
	Empirical Evidence
	Time-sensitive Programming Enables Efficient IM
	Crossroad Scales Well

	Conclusion and Future Work
	Acknowledgement
	References

